IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007251.html
   My bibliography  Save this article

Input-output efficiency evaluation of regional water-energy-food nexus under relational network and uncertainty

Author

Listed:
  • Zhang, Tianyuan
  • Zhou, Qifan
  • Liu, Qiming
  • Cai, Yanpeng
  • Tan, Qian

Abstract

Complex interrelationships and parameter uncertainties make it difficult to accurately assess the input-output efficiency of Water-Energy-Food (WEF) nexus. In this study, a fuzzy relational network data envelopment analysis model is developed. This approach is capable of describing the complex interrelationships between subsystems in fuzzy environments. For illustration purpose, this approach is applied to measure the performances of WEF nexus in Guangdong Province, China. Results indicate that the Pearl River Delta has higher WEF efficiency because of the coordinated development of subsystem efficiencies, while the other regions have lower WEF efficiency owing to the low efficiency of a certain subsystem. The WEF system has experienced three stages of decline, fluctuation and growth, with 2010 and 2015 as the turning points. The efficiency of water and energy subsystems are the main driving factors of the time variation of WEF nexus efficiency. Of all the intermediate products, the energy consumption for water supply needs to be increased the most, and agricultural water use needs to be reduced. Comparison against alternative models shows that the proposed model provides an efficient way to describe inter-subsystem linking activities and to process fuzzy information. Sensitivity analysis shows that the proposed model is robust when faced with reduced input indicators. The proposed approach is also potentially applicable to evaluating the efficiency of other systems with complex internal correlations under uncertainty.

Suggested Citation

  • Zhang, Tianyuan & Zhou, Qifan & Liu, Qiming & Cai, Yanpeng & Tan, Qian, 2025. "Input-output efficiency evaluation of regional water-energy-food nexus under relational network and uncertainty," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007251
    DOI: 10.1016/j.apenergy.2025.125995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Daohan Huang & Zihao Shen & Chengshuang Sun & Guijun Li, 2021. "Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1673-1688, April.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Olfat, Laya & Amiri, Maghsoud & Bamdad Soufi, Jahanyar & Pishdar, Mahsa, 2016. "A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 272-290.
    5. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    6. Haiyang Shang & Ying Feng & Ching-Cheng Lu & Chih-Yu Yang, 2023. "The Impact of Optimizing Industrial Energy Efficiency on Agricultural Development in OECD Countries," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    7. Avery W. Driscoll & Richard T. Conant & Landon T. Marston & Eunkyoung Choi & Nathaniel D. Mueller, 2024. "Greenhouse gas emissions from US irrigation pumping and implications for climate-smart irrigation policy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    9. Lotfi, Farhad Hosseinzadeh & Saen, Reza Farzipoor & Moghaddas, Zohreh & Vaez-Ghasemi, Mohsen, 2023. "Using an SBM-NDEA model to assess the desirable and undesirable outputs of sustainable supply chain: A case study in wheat industry," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    11. Guijun Li & Daohan Huang & Yulong Li, 2016. "China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    12. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    13. Shermeh, H. Ebrahimzadeh & Najafi, S.E. & Alavidoost, M.H., 2016. "A novel fuzzy network SBM model for data envelopment analysis: A case study in Iran regional power companies," Energy, Elsevier, vol. 112(C), pages 686-697.
    14. Qin, Jingxiu & Duan, Weili & Chen, Yaning & Dukhovny, Viktor A. & Sorokin, Denis & Li, Yupeng & Wang, Xuanxuan, 2022. "Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Chaofan Xian & Shuo Yang & Yupeng Fan & Haotong Wu & Cheng Gong, 2022. "Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China," Land, MDPI, vol. 11(10), pages 1-25, October.
    16. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    17. Hashem Omrani & Mehdi Keshavarz, 2016. "A performance evaluation model for supply chain of shipping company in Iran: an application of the relational network DEA," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(1), pages 121-135, January.
    18. Kao, Chiang, 2018. "A classification of slacks-based efficiency measures in network data envelopment analysis with an analysis of the properties possessed," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1109-1121.
    19. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    20. Wanke, Peter & Abul Kalam Azad, Md & Emrouznejad, Ali & Antunes, Jorge, 2019. "A dynamic network DEA model for accounting and financial indicators: A case of efficiency in MENA banking," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 52-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    2. Mohammad Tavassoli & Mahsa Ghandehari & Masoud Taherinia, 2023. "Rang-adjusted measure: modelling and computational aspects from internal and external perspectives for network DEA," Operational Research, Springer, vol. 23(4), pages 1-34, December.
    3. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    4. Kao, Chiang, 2019. "Inefficiency identification for closed series production systems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 599-607.
    5. Taleb, Mushtaq, 2025. "A general series network slacks-based measure approach for non-controllable inputs and undesirable outputs in mixed integer data envelopment analysis: An application to airport operations," Socio-Economic Planning Sciences, Elsevier, vol. 99(C).
    6. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    7. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    8. Tsung-Sheng Chang & Kaoru Tone & Quanling Wei, 2014. "Ownership-specified network DEA models," Annals of Operations Research, Springer, vol. 214(1), pages 73-98, March.
    9. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    10. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    11. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    12. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "The Impact of Economic Growth and Air Pollution on Public Health in 31 Chinese Cities," IJERPH, MDPI, vol. 16(3), pages 1-26, January.
    13. Zhen Shi & Yingju Wu & Yung-ho Chiu & Fengping Wu & Changfeng Shi, 2020. "Dynamic Linkages among Mining Production and Land Rehabilitation Efficiency in China," Land, MDPI, vol. 9(3), pages 1-25, March.
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    15. Mahmoudabadi, Mohammad Zarei & Emrouznejad, Ali, 2019. "Comprehensive performance evaluation of banking branches: A three-stage slacks-based measure (SBM) data envelopment analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 359-376.
    16. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    17. Ilias Vlachos & Panagiotis D. Zervopoulos & Gang Cheng, 2024. "Supply chain performance evaluation using a network data envelopment analysis model with bias-corrected estimates," Annals of Operations Research, Springer, vol. 337(1), pages 343-395, June.
    18. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    19. María José Barrio-Tellado & Luis César Herrero-Prieto, 2019. "Modelling museum efficiency in producing inter-reliant outputs," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(3), pages 485-512, September.
    20. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.