IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006853.html

Fuel cell health state estimation based on a novel dynamic degradation model under non-fixed dynamic vehicle working conditions

Author

Listed:
  • Li, Jianwei
  • Zou, Weitao
  • He, Hongwen
  • Zhang, Chenyu
  • Zhai, Shuang
  • Wan, Xinming
  • Mao, Zhanxing

Abstract

Proton exchange membrane fuel cells (PEMFCs) hold significant promise for vehicle applications due to their low carbon emissions and high efficiency. Accurate assessment of the state of health (SOH) of fuel cells is crucial for extending system life and minimizing overall costs. The SOH of a fuel cell is typically defined by the voltage decay under constant current. However, evaluating the health of fuel cells under dynamic vehicle conditions is challenging, as it is difficult to obtain the voltage decay pattern under constant current in such settings. Existing research has focused primarily on SOH estimation under steady-state or fixed-cycle conditions, yielding relatively good results, but there is a lack of studies on SOH evaluation under dynamic conditions. To address this gap, this paper presents a durability experiment conducted on a 120 kW automotive fuel cell system under non-fixed cycle dynamic conditions. Focusing on ohmic polarization decay as the key degradation index, we integrated an equivalent circuit model with a steady-state empirical model to establish a nonlinear fuel cell degradation model suitable for dynamic conditions. Using unscented Kalman filtering (UKF), the polarization curves are reconstructed at different stages of decay to evaluate the fuel cell’s health status. The feasibility and accuracy of the proposed method were verified through experimental data.

Suggested Citation

  • Li, Jianwei & Zou, Weitao & He, Hongwen & Zhang, Chenyu & Zhai, Shuang & Wan, Xinming & Mao, Zhanxing, 2025. "Fuel cell health state estimation based on a novel dynamic degradation model under non-fixed dynamic vehicle working conditions," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006853
    DOI: 10.1016/j.apenergy.2025.125955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Jianfeng & Shen, Xiaoning & Gao, Yabin & Liu, Jianxing & Sun, Guanghui, 2024. "The seasonal-trend disentangle based prognostic framework for PEM fuel cells," Renewable Energy, Elsevier, vol. 228(C).
    2. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    3. Quan, Shengwei & He, Hongwen & Chen, Jinzhou & Zhang, Zhendong & Han, Ruoyan & Wang, Ya-Xiong, 2023. "Health-aware model predictive energy management for fuel cell electric vehicle based on hybrid modeling method," Energy, Elsevier, vol. 278(PA).
    4. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    5. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    6. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    7. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
    8. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    11. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    2. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    3. Ma, Yangyang & Li, Songting & Zhou, Shulin & Wang, Xueyuan & Yuan, Hao & Chang, Guofeng & Zhu, Jiangong & Dai, Haifeng & Wei, Xuezhe, 2025. "Performance degradation prediction of proton exchange membrane fuel cells based on CNN-LSTM network with squeeze-and-excitation attention mechanism," Energy, Elsevier, vol. 335(C).
    4. Zhang, Tian & Hou, Zhengmeng & Li, Xiaoqin & Chen, Qianjun & Wang, Qichen & Lüddeke, Christian & Wu, Lin & Wu, Xuning & Sun, Wei, 2025. "A novel multivariable prognostic approach for PEMFC degradation and remaining useful life prediction using random forest and temporal convolutional network," Applied Energy, Elsevier, vol. 385(C).
    5. Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
    6. Zhang, Caizhi & Niu, Tong & Wei, Zhongbao & Hu, Xiaosong & Pan, Fengwen & Zeng, Tao & Si, Yaohui & Chin, Cheng Siong, 2025. "Lifespan prediction model for proton exchange membrane fuel cell vehicle based on time series information feature extraction and optimization," Renewable Energy, Elsevier, vol. 243(C).
    7. Yang, Jibin & Chen, Li & Wu, Xiaohua & Deng, Pengyi & Xue, Fajun & Xu, Xiaohui & Wang, Wenlong & Hu, Huaixiang, 2025. "Remaining useful life prediction of vehicle-oriented PEMFCs based on seasonal trends and hybrid data-driven models under real-world traffic conditions," Renewable Energy, Elsevier, vol. 249(C).
    8. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    12. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    13. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
    14. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
    15. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    16. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    17. Qiang Liu & Weihong Zang & Wentao Zhang & Yang Zhang & Yuqi Tong & Yanbiao Feng, 2025. "Steady-State Model Enabled Dynamic PEMFC Performance Degradation Prediction via Recurrent Neural Network," Energies, MDPI, vol. 18(10), pages 1-20, May.
    18. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    19. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    20. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.