Thermoelectric energy harvesting from day–night temperature swings with latent heat storage: Enhancing the efficiency by combining natural and Marangoni convection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2025.125880
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ravi Anant Kishore & Amin Nozariasbmarz & Bed Poudel & Mohan Sanghadasa & Shashank Priya, 2019. "Ultra-high performance wearable thermoelectric coolers with less materials," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
- Meng Shen & Kun Liu & Guanghui Zhang & Qifan Li & Guangzu Zhang & Qingfeng Zhang & Haibo Zhang & Shenglin Jiang & Yong Chen & Kui Yao, 2023. "Thermoelectric coupling effect in BNT-BZT-xGaN pyroelectric ceramics for low-grade temperature-driven energy harvesting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Vélez, C. & Khayet, M. & Ortiz de Zárate, J.M., 2015. "Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane," Applied Energy, Elsevier, vol. 143(C), pages 383-394.
- Peng, Hao & Guo, Wenhua & Feng, Shiyu & Shen, Yijun, 2022. "A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application," Applied Energy, Elsevier, vol. 322(C).
- Jan Skovajsa & Martin Koláček & Martin Zálešák, 2017. "Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling," Energies, MDPI, vol. 10(2), pages 1-18, January.
- Verma, Prashant & Varun & Singal, S.K., 2008. "Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 999-1031, May.
- C. Yang & D. Souchay & M. Kneiß & M. Bogner & H. M. Wei & M. Lorenz & O. Oeckler & G. Benstetter & Y. Q. Fu & M. Grundmann, 2017. "Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
- Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
- Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
- Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
- Madruga, Santiago, 2021. "Modeling of enhanced micro-energy harvesting of thermal ambient fluctuations with metallic foams embedded in Phase Change Materials," Renewable Energy, Elsevier, vol. 168(C), pages 424-437.
- Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
- Madruga, Santiago, 2021. "Modeling of enhanced micro-energy harvesting of thermal ambient fluctuations with metallic foams embedded in Phase Change Materials," Renewable Energy, Elsevier, vol. 168(C), pages 424-437.
- Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
- Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
- Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
- Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Peng, Hao & Guo, Wenhua & Feng, Shiyu & Shen, Yijun, 2022. "A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application," Applied Energy, Elsevier, vol. 322(C).
- Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
- Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
- Zhao, Kuan & Wang, Jifen & Xie, Huaqing, 2024. "A multifunctional flexible composite phase-change film with excellent solar driven thermal management," Renewable Energy, Elsevier, vol. 227(C).
- Chrysa Politi & Antonis Peppas & Maria Taxiarchou, 2023. "Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
- Wang, Yilin & Cheng, Kunlin & Dang, Chaolei & Wang, Cong & Qin, Jiang & Huang, Hongyan, 2023. "Performance and experimental investigation for a novel heat storage based thermoelectric harvester for hypersonic vehicles," Energy, Elsevier, vol. 263(PD).
- Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
- Xiaowen Sun & Yuedong Yan & Man Kang & Weiyun Zhao & Kaifen Yan & He Wang & Ranran Li & Shijie Zhao & Xiaoshe Hua & Boyi Wang & Weifeng Zhang & Yuan Deng, 2024. "General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Zhu, Yejun & Huang, Baoling & Wu, Jingshen, 2014. "Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis," Applied Energy, Elsevier, vol. 132(C), pages 543-550.
- Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
- Khan, Farooq & Kim, Dong Hyun & Lee, Jinwoo, 2025. "Functionalized materials and geometric designs of thermoelectric devices for smart wearable applications," Applied Energy, Elsevier, vol. 379(C).
- Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
- Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006105.html