Author
Listed:
- Madruga, Santiago
- Mendoza, Carolina
Abstract
Natural energy sources are a solution to power low-consumption electronic devices, such as sensors, in environments where batteries are impractical. Among these sources, thermoelectric conversion stands out for its ability to generate power from temperature fluctuations. However, its efficiency is severely constrained by the small temperature differences typically seen during natural day–night cycles, which limits its usability when relying on ambient thermal gradients. Through realistic physical modeling and 3D numerical simulations, we demonstrate that coupling a thermoelectric generator with a latent heat storage unit significantly enhances the conversion of natural day–night temperature swings into electricity. This enhancement is achieved by combining natural and Marangoni convective heat transfer. We utilize a standard thermoelectric module (Seebeck coefficient of α=0.027) paired with a heat storage unit containing the phase change material hexadecane, which has a Prandtl number of 45.5 and configured with a Bond number of 8. Using temperature profiles representative of Western Europe, Eastern Europe, and Brazil, we illustrate the practical and broad application of these enhanced micro-energy harvesters to power environmental sensors. Over a 24-hour period, the combined effects of buoyancy and thermocapillarity in a 16cm3 heat storage unit yield harvested energies (average power densities) of 2.6 J (29.7μW/cm2), 1.4 J (16.4μW/cm2), and 2.4 J (27.2μW/cm2) for the temperature profiles of Central Europe, Western Europe, and Brazil, respectively. Notably, even with weak thermocapillary effects at this Bond number, Marangoni convection doubles the harvested energy and average power density for the Central and Western Europe profiles compared to natural convection alone. The harvested energy is sufficient to uninterruptly power low-consumption sensors monitoring humidity, pressure, and ambient temperature, along with the necessary accompanying electronics. Importantly, this micro-energy harvester leverages fundamental physical properties of liquids: density variation with temperature (natural convection) and surface tension variation with temperature (Marangoni convection). The robustness of these results provides a foundation for further enhancements under more complex configurations.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.