IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v391y2025ics0306261925006063.html

Investigating the partial load of reversible solid oxide cell systems: A focus on balance of plant and thermal integration

Author

Listed:
  • Ficili, Marco
  • Colbertaldo, Paolo
  • Campanari, Stefano
  • Guandalini, Giulio

Abstract

Solid oxide cells are promising electrochemical devices capable of operating in both electrolysis and fuel cell modes with high electrical efficiency. This work investigates the design and partial-load operation of a reversible solid oxide cell (rSOC) system for steam electrolysis and hydrogen-based power generation, when adopting a unified balance of plant for both modes and molten salt thermal energy storage for thermal integration. Different configurations are compared with the aim of widening the part-load window, taking into account the electrochemical behavior as well as the changes in heat exchange properties. The definition of system efficiency losses with respect to the stack efficiency is proposed, helping in identifying the main causes of efficiency degradation throughout the part-load window. Results show that pre- or post-stack heaters are required when switching from exothermic to endothermic conditions. Moreover, they prove essential in keeping the rSOC in thermal balance also when the reaction is slightly exothermic. The use of electric heaters and hydrogen combustors is compared, and electric heaters appear to have the least impact on system efficiency at lower loads. For all configurations, the highest efficiency is obtained close to the thermoneutral point, which optimizes the trade-off between stack efficiency and system efficiency losses. Heat recovery in fuel cell mode is prominent at nominal load and could be beneficial in facilitating thermal integration between the two operational modes. However, the magnitude of its reduction at partial load is greater than the corresponding reduction in heat demand in electrolysis mode, leading to increased thermal imbalances between fuel cell and electrolysis modes.

Suggested Citation

  • Ficili, Marco & Colbertaldo, Paolo & Campanari, Stefano & Guandalini, Giulio, 2025. "Investigating the partial load of reversible solid oxide cell systems: A focus on balance of plant and thermal integration," Applied Energy, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006063
    DOI: 10.1016/j.apenergy.2025.125876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    2. Amladi, Amogh & Venkataraman, Vikrant & Woudstra, Theo & Aravind, P.V., 2024. "Hot air recirculation enlarges efficient operating window of reversible solid oxide cell systems: A thermodynamic study of energy storage using ammonia," Applied Energy, Elsevier, vol. 355(C).
    3. Giap, Van-Tien & Kang, Sanggyu & Ahn, Kook Young, 2019. "HIGH-EFFICIENT reversible solid oxide fuel cell coupled with waste steam for distributed electrical energy storage system," Renewable Energy, Elsevier, vol. 144(C), pages 129-138.
    4. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    5. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    6. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    7. Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
    8. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    2. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    3. Marco Sorrentino & Antonio Adamo & Gianmarco Nappi, 2019. "Self-Sufficient and Islanded-Oriented Design of a Reversible Solid Oxide Cell-Based Renewable Microgrid," Energies, MDPI, vol. 12(17), pages 1-15, August.
    4. Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
    5. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    6. Zhang, Yumeng & Wang, Ningling & Tong, Xiaofeng & Duan, Liqiang & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Wang, Ligang & Yang, Yongping, 2021. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Economic potential evaluated via plant capital-cost target," Applied Energy, Elsevier, vol. 290(C).
    7. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    8. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    9. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
    10. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    11. Abdellatif Azzaoui & Mohammed Attiaoui & Elmiloud Chaabelasri & Hugo Gonçalves Silva & Ahmed Alami Merrouni, 2025. "Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs," Energies, MDPI, vol. 18(14), pages 1-26, July.
    12. Uday K. Chakraborty, 2018. "Reversible and Irreversible Potentials and an Inaccuracy in Popular Models in the Fuel Cell Literature," Energies, MDPI, vol. 11(7), pages 1-11, July.
    13. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    14. Giovani T. T. Vieira & Derick Furquim Pereira & Seyed Iman Taheri & Khalid S. Khan & Mauricio B. C. Salles & Josep M. Guerrero & Bruno S. Carmo, 2022. "Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO 2 Emissions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    15. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    16. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    18. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    19. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    20. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:391:y:2025:i:c:s0306261925006063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.