IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v387y2025ics0306261925003307.html
   My bibliography  Save this article

A novel deep learning and GIS integrated method for accurate city-scale assessment of building facade solar energy potential

Author

Listed:
  • Xu, Chengliang
  • Chen, Shiao
  • Ren, Haoshan
  • Xu, Chen
  • Li, Guannan
  • Li, Tao
  • Sun, Yongjun

Abstract

Accurately assessing building solar potential is becoming increasingly important for sustainable urban development. However, evaluating the solar energy potential of building facades in urban areas poses significant challenges due to complex shading from surrounding structures and a lack of detailed facade information. This study proposes a comprehensive framework for assessing the solar PV potential of urban facades by integrating deep learning and geographic information systems (GIS). GIS was used to extract information about the layouts and heights of buildings, while a deep learning-based approach was developed to identify the window-to-wall ratio (WWR) of various building facades from street view images. To validate the proposed methodology, a region in Wuhan with a diverse range of architectural features was selected. The solar energy potential was estimated by combining facade information with shadow analysis. Additionally, a solar irradiance measurement experiment was conducted to verify the findings. The results revealed that a lack of WWR information for building facades can lead to significant overestimations of their solar energy potential, with errors ranging from 15 % to 50 %. Moreover, using standardized WWRs in the assessment can still result in errors between 3 % and 20 %. These discrepancies primarily stem from differences between actual and assumed WWRs used in the calculations. Further analysis shows that accurately assessing the solar energy potential of facades in various orientations requires considering both WWR data and shading effects. This comprehensive approach can be employed to more accurately characterize the solar energy potential of building facades in urban areas, facilitating the broader adoption of solar energy at the city scale.

Suggested Citation

  • Xu, Chengliang & Chen, Shiao & Ren, Haoshan & Xu, Chen & Li, Guannan & Li, Tao & Sun, Yongjun, 2025. "A novel deep learning and GIS integrated method for accurate city-scale assessment of building facade solar energy potential," Applied Energy, Elsevier, vol. 387(C).
  • Handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003307
    DOI: 10.1016/j.apenergy.2025.125600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Georgios & Papadopoulos, Agis M., 2014. "Façade photovoltaic systems on multifamily buildings: An urban scale evaluation analysis using geographical information systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 912-933.
    2. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    3. Huang, Pei & Ma, Zhenjun & Xiao, Longzhu & Sun, Yongjun, 2019. "Geographic Information System-assisted optimal design of renewable powered electric vehicle charging stations in high-density cities," Applied Energy, Elsevier, vol. 255(C).
    4. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    5. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon) & Yu, Haiyi, 2022. "Urban building energy and microclimate modeling – From 3D city generation to dynamic simulations," Energy, Elsevier, vol. 251(C).
    6. Cheng, Liang & Zhang, Fangli & Li, Shuyi & Mao, Junya & Xu, Hao & Ju, Weimin & Liu, Xiaoqiang & Wu, Jie & Min, Kaifu & Zhang, Xuedong & Li, Manchun, 2020. "Solar energy potential of urban buildings in 10 cities of China," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
    2. Sebastiano Anselmo & Maria Ferrara, 2023. "Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation," Energies, MDPI, vol. 16(23), pages 1-27, November.
    3. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    4. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    5. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).
    6. Drozd, Paweł & Kapica, Jacek & Jurasz, Jakub & Dąbek, Paweł, 2025. "Evaluating cities' solar potential using geographic information systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    7. repec:osf:osfxxx:5g8wy_v1 is not listed on IDEAS
    8. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    9. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    10. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    11. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    12. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    13. Yu, Zhe & Chen, Cuiying & Lou, Duo & Jiang, Jingjing & Ye, Bin, 2025. "Energy-economy-environment evaluation of building-integrated photovoltaic considering facade factors for representative megacities in China," Applied Energy, Elsevier, vol. 389(C).
    14. Syed Taha Taqvi & Ali Almansoori & Azadeh Maroufmashat & Ali Elkamel, 2022. "Utilizing Rooftop Renewable Energy Potential for Electric Vehicle Charging Infrastructure Using Multi-Energy Hub Approach," Energies, MDPI, vol. 15(24), pages 1-21, December.
    15. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    16. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    17. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    19. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    20. Hasheminasab, Hamidreza & Streimikiene, Dalia & Pishahang, Mohammad, 2023. "A novel energy poverty evaluation: Study of the European Union countries," Energy, Elsevier, vol. 264(C).
    21. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.