IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v500y2025ics0096300325001778.html
   My bibliography  Save this article

Convergence analysis of a Nyström-type method for a class of nonlinear integral equations with highly oscillatory kernels

Author

Listed:
  • Kassid, Qusay Abdulraheem
  • Sohrabi, Saeed
  • Ranjbar, Hamid

Abstract

In this paper, we present a Nyström-type method for the numerical solution of a class of nonlinear highly oscillatory Volterra integral equations with a trigonometric kernel. The implementation of this method leads to a nonlinear system that involves oscillatory integrals, which is then addressed using a two-point generalized quadrature rule to construct a fully discretized scheme. The error analysis of the method, in terms of both frequency and step length, is also presented. It is demonstrated that the proposed method outperforms the one recently introduced in the literature. To validate the method, several numerical examples are provided, confirming its efficiency and accuracy.

Suggested Citation

  • Kassid, Qusay Abdulraheem & Sohrabi, Saeed & Ranjbar, Hamid, 2025. "Convergence analysis of a Nyström-type method for a class of nonlinear integral equations with highly oscillatory kernels," Applied Mathematics and Computation, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001778
    DOI: 10.1016/j.amc.2025.129450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325001778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sohrabi, S. & Ranjbar, H. & Saei, M., 2017. "Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 141-152.
    2. Zhao, Longbin & Wang, Pengde, 2022. "Error estimates of piecewise Hermite collocation method for highly oscillatory Volterra integral equation with Bessel kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 137-150.
    3. S. Khudhair Abbas & S. Sohrabi & H. Ranjbar & Xian-Ming Gu, 2023. "Approximate Solution of a Class of Highly Oscillatory Integral Equations Using an Exponential Fitting Collocation Method," Journal of Mathematics, Hindawi, vol. 2023, pages 1-12, November.
    4. Jianyu Wang & Chunhua Fang & Guifeng Zhang, 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    5. Geng, F.Z. & Wu, X.Y., 2021. "Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    6. Hao Chen & Ling Liu & Junjie Ma, 2020. "Analysis of Generalized Multistep Collocation Solutions for Oscillatory Volterra Integral Equations," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafazadeh, Mahdi & Shahmorad, Sedaghat, 2024. "Convergence analysis of Jacobi spectral tau-collocation method in solving a system of weakly singular Volterra integral equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 322-337.
    2. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    3. Jianyu Wang & Chunhua Fang & Guifeng Zhang, 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    4. Lucas Jódar & Rafael Company, 2022. "Preface to “Mathematical Methods, Modelling and Applications”," Mathematics, MDPI, vol. 10(9), pages 1-2, May.
    5. Lu, Jiashu & Yang, Mengna & Nie, Yufeng, 2022. "Convergence analysis of Jacobi spectral collocation methods for weakly singular nonlocal diffusion equations with volume constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    6. Zhao, Longbin & Wang, Pengde & Fan, Qiongqi, 2025. "A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 202-210.
    7. Guo, Yuling & Xu, Xiaoyu & Wang, Zicheng & Wang, Zhongqing, 2024. "An hp-version Legendre collocation method for the third-kind VIEs with nonlinear vanishing delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 338-350.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.