IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v463y2024ics0096300323005301.html
   My bibliography  Save this article

Stability analysis of Boolean networks: An eigenvalue approach

Author

Listed:
  • Ji, Hankang
  • Li, Yuanyuan
  • Ding, Xueying
  • Alghamdi, Sultan M.
  • Lu, Jianquan

Abstract

This article investigates the stability of probabilistic Boolean networks (PBNs) and switched Boolean networks (SBNs). To begin with, a unique Boolean network is presented with both stochastic signal and switching signal. It is then converted to algebraic form using semi-tensor product. An important concept named “existed path” is proposed, and further a novel method based on eigenvalue and trace-based method is used to derive some necessary and sufficient stability criteria for the first time. Moreover, these criteria are extended to include ordinary PBNs and SBNs. Finally, several examples are given to illustrate the main results.

Suggested Citation

  • Ji, Hankang & Li, Yuanyuan & Ding, Xueying & Alghamdi, Sultan M. & Lu, Jianquan, 2024. "Stability analysis of Boolean networks: An eigenvalue approach," Applied Mathematics and Computation, Elsevier, vol. 463(C).
  • Handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005301
    DOI: 10.1016/j.amc.2023.128361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323005301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Bo & Deng, Zheng-hong & Zhao, Da-wei & Song, Qun, 2017. "State analysis of Boolean control networks with impulsive and uncertain disturbances," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 187-192.
    2. Dai, Shaoyu & Li, Bowen & Lu, Jianquan & Zhong, Jie & Liu, Yang, 2023. "A unified transform method for general robust property of probabilistic Boolean control networks," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    3. Du, Leihao & Zhang, Zhipeng & Xia, Chengyi, 2023. "A state-flipped approach to complete synchronization of Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    4. Li, Haitao & Xu, Xiaojing & Ding, Xueying, 2019. "Finite-time stability analysis of stochastic switched boolean networks with impulsive effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 557-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangshan Kong & Qilong Sun & Haitao Li, 2022. "Survey on Mathematical Models and Methods of Complex Logical Dynamical Systems," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    2. Gao, Bo & liu, Xuan & Hou, Shuxia & Jia, Danyang & Du, Mingjing, 2019. "Resolving public goods dilemma by giving the poor more support," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Gao, Bo & Liu, Xuan & Lan, Zhong-Zhou & Hong, Jie & Zhang, Wenguang, 2021. "The evolution of cooperation with preferential selection in voluntary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    4. Zhu, Sanmei & Feng, Jun-e, 2021. "The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    5. Guo, Peilian & Han, Changda, 2021. "Nash equilibrium and group strategy consensus of networked evolutionary game with coupled social groups," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    6. Wang, Yong & Zhong, Jie & Pan, Qinyao & Li, Ning, 2024. "Minimal pinning control for set stability of Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    7. Gao, Bo & Liu, Xuan & Lan, Zhongzhou & Fu, Rongrong, 2018. "A novel method for reconstructing period with single input in NFSR," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 36-40.
    8. Liu, Yansheng & Song, Mengjin & Li, Haitao & Li, Yalu & Hou, Wenying, 2021. "Containment problem of finite-field networks with fixed and switching topology," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    9. Cao, Jing & Fan, Jinjun, 2021. "Discontinuous dynamical behaviors in a 2-DOF friction collision system with asymmetric damping," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Li, Yalu & Li, Haitao & Li, Yuanyuan, 2021. "Constrained set controllability of logical control networks with state constraints and its applications," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    11. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Du, Leihao & Zhang, Zhipeng & Xia, Chengyi, 2023. "A state-flipped approach to complete synchronization of Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    13. Peng, Yuanyuan & Fan, Jinjun & Gao, Min & Li, Jianping, 2021. "Discontinuous dynamics of an asymmetric 2-DOF friction oscillator with elastic and rigid impacts," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Yang, Xinrong & Sun, Qilong & Li, Haitao & Kong, Xiangshan, 2023. "Set stabilizability of impulsive probabilistic Boolean networks via impulsive sequence design," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    15. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Controllability of Impulsive ψ -Caputo Fractional Evolution Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    16. Guang Zhang & Nan He & Yanxia Dong, 2021. "A Proportional-Egalitarian Allocation Policy for Public Goods Problems with Complex Network," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
    17. Tong, Liyun & Liu, Yang & Lou, Jungang & Lu, Jianquan & Alsaadi, Fuad E., 2018. "Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 263-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.