IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v462y2024ics0096300323005064.html
   My bibliography  Save this article

Cooperative fault-tolerant tracking control for multi-agent systems: A multiple description encoding scheme

Author

Listed:
  • Wang, Xi
  • Ju, Yamei
  • Ding, Derui
  • Liu, Hongjian

Abstract

In this article, the cooperative fault-tolerant tracking control (FTTC) is investigated for discrete-time multi-agent systems (MASs) with time-varying delays (TVDs) under multiple description encoding schemes (MDESs). First, a uniform channel model is proposed to describe the employed MDES subject to the effect of packet dropouts by introducing two independent random variables obeying the Bernoulli distribution and three indicator variables. Subsequently, a novel intermediate estimator is designed to estimate both system states and a fictitious intermediate variable (an integration of faults and leader's inputs) based on relatively measured outputs. In terms of the Lyapunov stability theory, some sufficient conditions are acquired to guarantee that the closed-loop system is exponentially ultimately bounded in the mean-square sense. Furthermore, the desired gain matrices are obtained by resorting to both the graph feature and singular value decomposition. Finally, the effectiveness and superiority are tested by two simulation examples for the proposed tracking protocol.

Suggested Citation

  • Wang, Xi & Ju, Yamei & Ding, Derui & Liu, Hongjian, 2024. "Cooperative fault-tolerant tracking control for multi-agent systems: A multiple description encoding scheme," Applied Mathematics and Computation, Elsevier, vol. 462(C).
  • Handle: RePEc:eee:apmaco:v:462:y:2024:i:c:s0096300323005064
    DOI: 10.1016/j.amc.2023.128337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323005064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luyang Yu & Ying Cui & Yurong Liu & Naif D. Alotaibi & Fawaz E. Alsaadi, 2022. "Sampled-based consensus of multi-agent systems with bounded distributed time-delays and dynamic quantisation effects," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(11), pages 2390-2406, August.
    2. Miao Cai & Xiao He & Donghua Zhou, 2022. "Performance-improved finite-time fault-tolerant control for linear uncertain systems with intermittent faults: an overshoot suppression strategy," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(16), pages 3408-3425, December.
    3. Ma, Yong-Sheng & Che, Wei-Wei & Deng, Chao, 2022. "Observer-Based fuzzy containment control for nonlinear networked mass under dos attacks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Wenjing An & Peifeng Zhao & Hongjian Liu & Jun Hu, 2022. "Distributed multi-step subgradient projection algorithm with adaptive event-triggering protocols: a framework of multiagent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(13), pages 2758-2772, October.
    6. Zewei Yang & Yurong Liu & Wenbing Zhang & Fawaz E. Alsaadi & Khalid H. Alharbi, 2022. "Differentially private containment control for multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(13), pages 2814-2831, October.
    7. Jinghui Suo & Nan Li, 2022. "Observer-based synchronisation control for discrete-time delayed switched complex networks with coding–decoding approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(13), pages 2711-2728, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    5. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    6. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    7. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Zheng, Xiaoyuan & Kang, Yu & Li, Hongyi & Li, Jitao, 2023. "Multiple description encoding-decoding-based resilient filtering for complex networks under the round-Robin protocol," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    9. Ren, Yingying & Ding, Da-Wei & Long, Yue, 2023. "Finite-frequency fixed-order dynamic output-feedback control via a homogeneous polynomially parameter-dependent technique," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    11. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    12. Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
    13. Zhou, Yusheng & Chen, Danhong, 2021. "Optimized state-dependent switching law design for a class of switched nonlinear systems with two unstable subsystems," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    14. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    15. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Zhen & Wang, Jian, 2020. "Reachable set estimation for Markov jump LPV systems with time delays," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    16. Guo, Xiyue & Liang, Hongjing & Pan, Yingnan, 2020. "Observer-Based Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Multi-Agent Systems with Dead-Zone Input," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    17. Sun, Shaoxin & Wang, Yingchun & Zhang, Huaguang & Sun, Jiayue, 2020. "Multiple intermittent fault estimation and tolerant control for switched T-S fuzzy stochastic systems with multiple time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    18. Song, Xiaona & Zhang, Renzhi & Song, Shuai & Zhang, Yijun, 2022. "Fuzzy adaptive-event-triggered control for semi-linear parabolic PDE systems with stochastic actuator failures," Applied Mathematics and Computation, Elsevier, vol. 426(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:462:y:2024:i:c:s0096300323005064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.