IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v447y2023ics0096300323000905.html
   My bibliography  Save this article

H∞.. admissibilization for time-varying delayed nonlinear singular impulsive jump systems based on memory state-feedback control

Author

Listed:
  • Liu, Yiqun
  • Zhuang, Guangming
  • Zhao, Junsheng
  • Lu, Junwei
  • Wang, Zekun

Abstract

This paper addresses the problem of H∞ admissibilization for time-varying delayed nonlinear singular impulsive jump systems based on memory fuzzy state-feedback control. New criteria to guarantee the H∞ admissibility for the fuzzy time-varying delayed singular impulsive jump systems are obtained by establishing the improved timer-dependent Lyapunov–Krasovskii functional. The singular value decomposition technique is utilized to eliminate internal impulses, and the memory fuzzy state-feedback controller is successfully designed by using parallel distribution compensation technique to inhibit the effects of external unstable impulses and time-varying delays. The gains of the desired memory fuzzy state-feedback controller are obtained through solving linear matrix inequalities. Finally, the rightness and validity of the obtained results are demonstrated by two simulation examples containing the bio-economic system.

Suggested Citation

  • Liu, Yiqun & Zhuang, Guangming & Zhao, Junsheng & Lu, Junwei & Wang, Zekun, 2023. "H∞.. admissibilization for time-varying delayed nonlinear singular impulsive jump systems based on memory state-feedback control," Applied Mathematics and Computation, Elsevier, vol. 447(C).
  • Handle: RePEc:eee:apmaco:v:447:y:2023:i:c:s0096300323000905
    DOI: 10.1016/j.amc.2023.127921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenping & Zhu, Quanxin, 2022. "Stability of stochastic nonlinear delay systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Visakamoorthi, B. & Subramanian, K. & Muthukumar, P., 2022. "Hidden Markov model based non-fragile sampled-data control design for mode-dependent fuzzy systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    3. Wang, Zhe & Xue, Dingyu & Pan, Feng, 2021. "Observer-based robust control for singular switched fractional order systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    4. Xian-Ming Zhang & Qing-Long Han & Xiaohua Ge, 2022. "The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: a survey," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(12), pages 2480-2495, September.
    5. Xie, Lifei & Cheng, Jun & Wang, Hailing & Wang, Jiange & Hu, Mengjie & Zhou, Zhidong, 2022. "Memory-based event-triggered asynchronous control for semi-Markov switching systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    6. Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S., 2022. "Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 164-180.
    7. Zhenghong Jin & Qingling Zhang & Xinyou Meng, 2019. "The impulse analysis of the T-S fuzzy singular system via Kronecker index," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(7), pages 1327-1337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingli Xia & Linna Liu & Jianyin Fang & Yicheng Zhang, 2023. "Stability Analysis for a Class of Stochastic Differential Equations with Impulses," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    2. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Spyridon D. Mourtas & Chrysostomos Kasimis, 2022. "Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    4. Faisal Altaf & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Ahmad H. Milyani, 2022. "Adaptive Evolutionary Computation for Nonlinear Hammerstein Control Autoregressive Systems with Key Term Separation Principle," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    5. Lin, An & Cheng, Jun & Cao, Jinde & Wang, Hailing & Alsaedi, Ahmed, 2022. "Fault detection filtering for MNNs with dynamic quantization and improved protocol," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    6. Zhang, Jianan & Ma, Yuechao, 2023. "Adaptive fault-tolerant double asynchronous control for switched semi-Markov jump systems via improved memory sampled-data technique," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    8. Houssem Jerbi & Hadeel Alharbi & Mohamed Omri & Lotfi Ladhar & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "Towards Higher-Order Zeroing Neural Network Dynamics for Solving Time-Varying Algebraic Riccati Equations," Mathematics, MDPI, vol. 10(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:447:y:2023:i:c:s0096300323000905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.