IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v400y2021ics0096300321001430.html
   My bibliography  Save this article

Reproducing kernel method to solve fractional delay differential equations

Author

Listed:
  • Allahviranloo, Tofigh
  • Sahihi, Hussein

Abstract

This paper is devoted to the numerical scheme for Fractional Delay Differential Equations (FDDEs). We use a semi-analytical method as Reproducing kernel Method (RKM) to solve FDDE such that the obtained approximate results are much better than other methods in comparison. The main obstacle to solve this problem is the existence of a Gram-Schmidt orthogonalization process in the general form of reproducing kernel method, that is very time consuming. So, we introduce a different implementation for the general form of the reproducing kernel method. In this method, the Gram-Schmidt orthogonalization process is eliminated to significantly reduce the CPU-time. Also, this new method, increases the accuracy of approximate solutions. Due to the increasing accuracy of approximate solutions, we will be able to provide a valid error analysis for this technique. The accuracy of the theoretical results are also illustrated by solving two numerical examples.

Suggested Citation

  • Allahviranloo, Tofigh & Sahihi, Hussein, 2021. "Reproducing kernel method to solve fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 400(C).
  • Handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001430
    DOI: 10.1016/j.amc.2021.126095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, F.Z. & Qian, S.P. & Cui, M.G., 2015. "Improved reproducing kernel method for singularly perturbed differential-difference equations with boundary layer behavior," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 58-63.
    2. Tang, Z.Q. & Geng, F.Z., 2016. "Fitted reproducing kernel method for singularly perturbed delay initial value problems," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 169-174.
    3. Li, Xiuying & Li, Haixia & Wu, Boying, 2019. "Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 304-313.
    4. Saeed, Umer & Rehman, Mujeeb ur & Iqbal, Muhammad Asad, 2015. "Modified Chebyshev wavelet methods for fractional delay-type equations," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 431-442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Smadi, Mohammed & Arqub, Omar Abu & Shawagfeh, Nabil & Momani, Shaher, 2016. "Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 137-148.
    2. Usman, M. & Hamid, M. & Zubair, T. & Haq, R.U. & Wang, W. & Liu, M.B., 2020. "Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    3. Sahihi, Hussein & Abbasbandy, Saeid & Allahviranloo, Tofigh, 2019. "Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 583-598.
    4. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    5. Geng, F.Z. & Wu, X.Y., 2021. "Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    6. Xiao Zhang & Feng Ding & Ling Xu & Ahmed Alsaedi & Tasawar Hayat, 2019. "A Hierarchical Approach for Joint Parameter and State Estimation of a Bilinear System with Autoregressive Noise," Mathematics, MDPI, vol. 7(4), pages 1-17, April.
    7. Usman, Muhammad & Hamid, Muhammad & Khan, Zafar Hayat & Haq, Rizwan Ul, 2021. "Neuronal dynamics and electrophysiology fractional model: A modified wavelet approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    8. Kumar, Sunil & Kumar, B. V. Rathish, 2017. "A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differential equation," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 508-522.
    9. Chen, Shu-Bo & Soradi-Zeid, Samaneh & Dutta, Hemen & Mesrizadeh, Mehdi & Jahanshahi, Hadi & Chu, Yu-Ming, 2021. "Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Chen, Zhong & Gou, QianQian, 2019. "Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 465-478.
    11. Hao Ma & Jian Pan & Lei Lv & Guanghui Xu & Feng Ding & Ahmed Alsaedi & Tasawar Hayat, 2019. "Recursive Algorithms for Multivariable Output-Error-Like ARMA Systems," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    12. Hartung, Ferenc, 2022. "On numerical approximation of a delay differential equation with impulsive self-support condition," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    13. Li, X.Y. & Wu, B.Y., 2020. "A new kernel functions based approach for solving 1-D interface problems," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    14. Feng Ding & Jian Pan & Ahmed Alsaedi & Tasawar Hayat, 2019. "Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data," Mathematics, MDPI, vol. 7(5), pages 1-15, May.
    15. Lijuan Wan & Ximei Liu & Feng Ding & Chunping Chen, 2019. "Decomposition Least-Squares-Based Iterative Identification Algorithms for Multivariable Equation-Error Autoregressive Moving Average Systems," Mathematics, MDPI, vol. 7(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.