IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v337y2018icp329-334.html
   My bibliography  Save this article

Bounds for scattering number and rupture degree of graphs with genus

Author

Listed:
  • Li, Yinkui
  • Gu, Ruijuan

Abstract

For a given graph G=(V,E), denote by m(G) and ω(G) the order of the largest component and the number of components of G, respectively. The scattering number of G is defined as s(G)=max{ω(G−X)−|X|:X⊆V,ω(G−X)>1}, and the rupture degree r(G)=max{ω(G−X)−|X|−m(G−X):X⊆V(G),ω(G−X)>1}. These two parameters are related to reliability and vulnerability of networks. In this paper, we present some new bounds on the scattering number and rupture degree of a graph G in terms of its connectivity κ(G) and genus γ(G). Furthermore, we give graphs to show these bounds are best possible.

Suggested Citation

  • Li, Yinkui & Gu, Ruijuan, 2018. "Bounds for scattering number and rupture degree of graphs with genus," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 329-334.
  • Handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:329-334
    DOI: 10.1016/j.amc.2018.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318304326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    2. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guihai & Qu, Hui, 2018. "The coefficients of the immanantal polynomial," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 38-44.
    2. Cai, Qingqiong & Cao, Fuyuan & Li, Tao & Wang, Hua, 2018. "On distances in vertex-weighted trees," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 435-442.
    3. Ma, Yuede & Cao, Shujuan & Shi, Yongtang & Dehmer, Matthias & Xia, Chengyi, 2019. "Nordhaus–Gaddum type results for graph irregularities," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 268-272.
    4. Tratnik, Niko, 2018. "On the Steiner hyper-Wiener index of a graph," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 360-371.
    5. Noureen, Sadia & Bhatti, Akhlaq Ahmad & Ali, Akbar, 2021. "Towards the solution of an extremal problem concerning the Wiener polarity index of alkanes," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Li, Fengwei & Ye, Qingfang & Broersma, Hajo & Ye, Ruixuan & Zhang, Xiaoyan, 2021. "Extremality of VDB topological indices over f–benzenoids with given order," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    7. Ali, Akbar & Du, Zhibin & Ali, Muhammad, 2018. "A note on chemical trees with minimum Wiener polarity index," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 231-236.
    8. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Lan, Yongxin & Li, Tao & Ma, Yuede & Shi, Yongtang & Wang, Hua, 2018. "Vertex-based and edge-based centroids of graphs," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 445-456.
    10. Li, Shuchao & Wang, Hua & Wang, Shujing, 2019. "Some extremal ratios of the distance and subtree problems in binary trees," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 232-245.
    11. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    12. Dobrynin, Andrey A., 2019. "Infinite family of 2-connected transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 1-4.
    13. Lan, Yongxin & Li, Tao & Wang, Hua & Xia, Chengyi, 2019. "A note on extremal trees with degree conditions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:329-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.