IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v333y2018icp8-19.html
   My bibliography  Save this article

Accelerating the convergence speed of iterative methods for solving nonlinear systems

Author

Listed:
  • Xiao, Xiao-Yong
  • Yin, Hong-Wei

Abstract

In this paper, for solving systems of nonlinear equations, we develop a family of two-step third order methods and introduce a technique by which the order of convergence of many iterative methods can be improved. Given an iterative method of order p ≥ 2 which uses the extended Newton iteration as a predictor, a new method of order p+2 is constructed by introducing only one additional evaluation of the function. In addition, for an iterative method of order p ≥ 3 using the Newton iteration as a predictor, a new method of order p+3 can be extended. Applying this procedure, we develop some new efficient methods with higher order of convergence. For comparing these new methods with the ones from which they have been derived, we discuss the computational efficiency in detail. Several numerical examples are given to justify the theoretical results by the asymptotic behaviors of the considered methods.

Suggested Citation

  • Xiao, Xiao-Yong & Yin, Hong-Wei, 2018. "Accelerating the convergence speed of iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 8-19.
  • Handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:8-19
    DOI: 10.1016/j.amc.2018.03.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318302893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.03.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Xiaoyong & Yin, Hongwei, 2015. "A new class of methods with higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 300-309.
    2. Xiao, Xiaoyong & Yin, Hongwei, 2017. "Achieving higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 251-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Ramandeep Behl & Ioannis K. Argyros, 2020. "Local Convergence for Multi-Step High Order Solvers under Weak Conditions," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    3. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    4. Michael I. Argyros & Ioannis K. Argyros & Samundra Regmi & Santhosh George, 2022. "Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    5. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    6. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:8-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.