Third derivative modification of k-step block Falkner methods for the numerical solution of second order initial-value problems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2018.03.098
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2016. "An efficient variable step-size rational Falkner-type method for solving the special second-order IVP," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 39-51.
- Mazzia, Francesca & Nagy, A.M., 2015. "A new mesh selection strategy with stiffness detection for explicit Runge–Kutta methods," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 125-134.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Janez Urevc & Miroslav Halilovič, 2021. "Enhancing Accuracy of Runge–Kutta-Type Collocation Methods for Solving ODEs," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
- Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
- Denis Butusov, 2021. "Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
- Reem Allogmany & Fudziah Ismail, 2020. "Implicit Three-Point Block Numerical Algorithm for Solving Third Order Initial Value Problem Directly with Applications," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
- Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
- Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
- Kinda Abuasbeh & Sania Qureshi & Amanullah Soomro & Muath Awadalla, 2023. "An Optimal Family of Block Techniques to Solve Models of Infectious Diseases: Fixed and Adaptive Stepsize Strategies," Mathematics, MDPI, vol. 11(5), pages 1-23, February.
- Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
- Higinio Ramos & Ridwanulahi Abdulganiy & Ruth Olowe & Samuel Jator, 2021. "A Family of Functionally-Fitted Third Derivative Block Falkner Methods for Solving Second-Order Initial-Value Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Amodio, P. & Iavernaro, F. & Mazzia, F. & Mukhametzhanov, M.S. & Sergeyev, Ya.D., 2017. "A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 24-39.
- Denis Butusov, 2021. "Adaptive Stepsize Control for Extrapolation Semi-Implicit Multistep ODE Solvers," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
- Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
- Reem Allogmany & Fudziah Ismail, 2020. "Implicit Three-Point Block Numerical Algorithm for Solving Third Order Initial Value Problem Directly with Applications," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:231-245. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.