IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp350-356.html
   My bibliography  Save this article

New efficient multipoint iterative methods for solving nonlinear systems

Author

Listed:
  • Rostamy, Davoud
  • Bakhtiari, Parisa

Abstract

It is attempted to put forward a new multipoint iterative method for approximating solutions of nonlinear systems. The main feature of the extended methods is that it uses only one LU factorization which preserves and reduces computational complexities. Moreover, the first step is designed in such a way that in most cases singularity of the denominator is avoided. Therefore, we try to generalize the suggested method so that we can increase the order of convergence from four to six and eight, but we do not need any new LU factorization. Also, we justify this advantage of the convergence analysis versus some numerical methods with different examples.

Suggested Citation

  • Rostamy, Davoud & Bakhtiari, Parisa, 2015. "New efficient multipoint iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 350-356.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:350-356
    DOI: 10.1016/j.amc.2015.05.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramandeep Behl & Ioannis K. Argyros, 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    2. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    3. Deepak Kumar & Ioannis K. Argyros & Janak Raj Sharma, 2018. "Convergence Ball and Complex Geometry of an Iteration Function of Higher Order," Mathematics, MDPI, vol. 7(1), pages 1-13, December.
    4. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    5. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    6. Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
    7. Marcos Tostado-Véliz & Salah Kamel & Francisco Jurado & Francisco J. Ruiz-Rodriguez, 2021. "On the Applicability of Two Families of Cubic Techniques for Power Flow Analysis," Energies, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:350-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.