IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v255y2015icp25-35.html
   My bibliography  Save this article

Infinite computations and the generic finite

Author

Listed:
  • Kauffman, Louis H.

Abstract

This paper introduces the concept of a generic finite set and points out that a consistent and significant interpretation of the grossone, ① notation of Sergeyev is that ① takes the role of a generic natural number. This means that ① is not itself a natural number, yet it can be treated as one and used in the generic expression of finite sets and finite formulas, giving a new power to algebra and algorithms that embody this usage. In this view,N={1,2,3,…,①-2,①-1,①}is not an infinite set, it is a symbolic structure representing a generic finite set. We further consider the concept of infinity in categories. An object A in a given category C is infinite relative to that category if and only if there is a injection J:A⟶A in C that is not a surjection. In the category of sets this recovers the usual notion of infinity. In other categories, an object may be non-infinite (finite) while its underlying set (if it has one) is infinite. The computational methodology due to Sergeyev for executing numerical calculations with infinities and infinitesimals is considered from this categorical point of view.

Suggested Citation

  • Kauffman, Louis H., 2015. "Infinite computations and the generic finite," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 25-35.
  • Handle: RePEc:eee:apmaco:v:255:y:2015:i:c:p:25-35
    DOI: 10.1016/j.amc.2014.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031400890X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    2. Sergeyev, Yaroslav D., 2007. "Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 50-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tohmé, Fernando & Caterina, Gianluca & Gangle, Rocco, 2020. "Computing Truth Values in the Topos of Infinite Peirce’s α-Existential Graphs," Applied Mathematics and Computation, Elsevier, vol. 385(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amodio, P. & Iavernaro, F. & Mazzia, F. & Mukhametzhanov, M.S. & Sergeyev, Ya.D., 2017. "A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 24-39.
    2. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    3. Lolli, Gabriele, 2015. "Metamathematical investigations on the theory of Grossone," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 3-14.
    4. Caldarola, Fabio, 2018. "The Sierpinski curve viewed by numerical computations with infinities and infinitesimals," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 321-328.
    5. De Leone, Renato, 2018. "Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 290-297.
    6. Cococcioni, Marco & Pappalardo, Massimo & Sergeyev, Yaroslav D., 2018. "Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 298-311.
    7. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    8. Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    9. Margenstern, Maurice, 2016. "Infinigons of the hyperbolic plane and grossone," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 45-53.
    10. Herrmann, Richard, 2015. "A fractal approach to the dark silicon problem: A comparison of 3D computer architectures – Standard slices versus fractal Menger sponge geometry," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 38-41.
    11. Tohmé, Fernando & Caterina, Gianluca & Gangle, Rocco, 2020. "Computing Truth Values in the Topos of Infinite Peirce’s α-Existential Graphs," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:255:y:2015:i:c:p:25-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.