IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i2p291-299.html
   My bibliography  Save this article

Analyzing soil soluble phosphorus transport with root-phosphorus-uptake applying an inverse method

Author

Listed:
  • Zhu, Xiangming
  • Zuo, Qiang
  • Shi, Jianchu

Abstract

Soil soluble phosphorus (P) transport with root-phosphorus-uptake (RPU) is a critical process for plant growth, cycling of P in soil-plant systems and environment protection. However, modeling soil soluble P transport is extremely challenging because it is difficult to measure the RPU distribution directly, especially in the field. In this study, an inverse method, which was utilized successfully to estimate the root-water-uptake (RWU) rate distribution by Zuo and Zhang (2002) and the source-sink term in the nitrate (NO-3-N) transport equation by Shi et al. (2007), was applied to estimate the RPU rate distribution and analyze soil soluble P transport in the soil-plant systems. A soil column experiment (Exp. 1) and a field experiment (Exp. 2), respectively with winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) growth, were carried out to observe the dynamics of soil water and soluble P. Based on the experimental data in Exp. 1, the average RWU and RPU rate distributions during different irrigation periods were estimated using the inverse method. The relative errors of the total P extracted by wheat between the estimated and measured values during all periods were less than 10%. The estimated RPU rate distribution during the period of 10.5-15.5 days after planting (DAP) was used to optimize the dimensionless RPU factor [delta] to establish the RPU model ([delta]=1.31), which helped to calculate the RPU rate distributions during other periods (from 16.5 to 57.5 DAP) in Exp. 1. The calculated RPU rate distributions were compared well with the estimated profiles by the inverse method, and the root mean squared error between them was less than 0.00005mgcm-3d-1. Correspondingly, the calculated total P extracted by winter wheat was also comparable with the measured value, with the relative error less than 10%. Similarly, the procedures were employed for summer maize in Exp. 2. The estimated (using the inverse method) and calculated (through the RPU model with [delta]=1.38) RPU rate distributions were in good agreement with the root mean squared error as less as 0.000031mgcm-3d-1. According to the established RPU models ([delta]=1.31 and 1.38 for Exps. 1 and 2, respectively), the distributions of soil water content and soluble P concentration were simulated, and compared well with the measured profiles, with the maximum root mean squared error of 0.0088cm3cm-3 and 0.0066mgcm-3 in Exp. 1, and 0.023cm3cm-3 and 0.0015mgcm-3 in Exp. 2, respectively. The inverse method should be effective and applicable for estimating the RPU rate distribution, establishing the RPU model and analyzing soil soluble P transport in soil-plant systems, either in laboratory or in the field.

Suggested Citation

  • Zhu, Xiangming & Zuo, Qiang & Shi, Jianchu, 2010. "Analyzing soil soluble phosphorus transport with root-phosphorus-uptake applying an inverse method," Agricultural Water Management, Elsevier, vol. 97(2), pages 291-299, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:291-299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00289-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Sen & Zuo, Qiang & Jin, Xinxin & Ma, Wenwen & Shi, Jianchu & Ben-Gal, Alon, 2018. "The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system," Agricultural Water Management, Elsevier, vol. 201(C), pages 11-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:291-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.