IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i10p1703-1710.html
   My bibliography  Save this article

Soil water storage and drainage under cotton-based cropping systems in a furrow-irrigated Vertisol

Author

Listed:
  • Hulugalle, N.R.
  • Weaver, T.B.
  • Finlay, L.A.

Abstract

Comparative studies of drainage and leaching under tillage systems in irrigated tropical and sub-tropical Vertisols are sparse. The objective of this study was to quantify drainage under cotton-based cropping systems sown on permanent beds in an irrigated Vertisol. Drainage and soil water storage were measured with the chloride mass balance method and neutron moisture meter, respectively, during the 2002-03, 2004-05, 2006-07 and 2008-09 cotton seasons in an on-going experiment in a Vertisol in NW NSW. The experimental treatments were: cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds where the wheat stubble was retained as in situ mulch into which the following cotton crop was sown. Subject to in-crop rainfall, irrigation frequency varied between 7 and 14 days for cotton and 2-3 months for wheat. In 2005, a split-plot design was superimposed on the existing experiment such that the main-plot treatments were irrigation frequency ("frequent", 7-14-day irrigation interval; "infrequent", 14-21-day irrigation interval), and sub-plot treatments were the historical tillage system/crop rotation combinations. In comparison with cotton monoculture sown either after conventional tillage or on permanent beds, soil water storage, particularly during the early part of growing season when rainfall provided the major proportion of crop water requirements, and drainage were greatest when a cotton-wheat rotation was sown on permanent beds. Seasonal drainage out of the 1.2Â m depth, averaged among all seasons, was of the order of 25Â mm, 33Â mm and 70Â mm with cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds, respectively. Soil water storage and drainage were also greater when irrigation frequency was greater. Seasonal drainage out of the 1.2Â m depth, averaged between the 2006-07 and 2008-09 seasons, was 54Â mm with "frequent irrigation", and 28Â mm with "infrequent" irrigation. Infiltration was less in management systems which resulted in wetter soil; viz. frequent irrigation or a cotton-wheat rotation on permanent beds with in situ stubble retention. Drainage water losses in a furrow-irrigated Vertisol may be reduced and soil water storage increased (i.e. water conservation improved) by sowing a cotton-wheat rotation with in situ stubble retention under less frequent irrigation.

Suggested Citation

  • Hulugalle, N.R. & Weaver, T.B. & Finlay, L.A., 2010. "Soil water storage and drainage under cotton-based cropping systems in a furrow-irrigated Vertisol," Agricultural Water Management, Elsevier, vol. 97(10), pages 1703-1710, October.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1703-1710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00198-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Hongzheng & Gao, Yunhe & Sun, Kexin & Gu, Yuhui & Ma, Xiaoyi, 2023. "Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency," Agricultural Water Management, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:10:p:1703-1710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.