IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v68y2004i1p19-32.html
   My bibliography  Save this article

Infiltration parameters for furrow irrigation

Author

Listed:
  • Holzapfel, E. A.
  • Jara, J.
  • Zuniga, C.
  • Marino, M. A.
  • Paredes, J.
  • Billib, M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Holzapfel, E. A. & Jara, J. & Zuniga, C. & Marino, M. A. & Paredes, J. & Billib, M., 2004. "Infiltration parameters for furrow irrigation," Agricultural Water Management, Elsevier, vol. 68(1), pages 19-32, July.
  • Handle: RePEc:eee:agiwat:v:68:y:2004:i:1:p:19-32
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(04)00080-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holzapfel, E. A. & Marino, M. A. & Chavez-Morales, J., 1984. "Comparison and selection of furrow irrigation models," Agricultural Water Management, Elsevier, vol. 9(2), pages 105-125, September.
    2. Esfandiari, M. & Maheshwari, B. L., 1997. "Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods," Agricultural Water Management, Elsevier, vol. 34(2), pages 169-185, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoja Ghorbani Dashtaki & Mehdi Homaee & Mohammad Mahdian & Mehdi Kouchakzadeh, 2009. "Site-Dependence Performance of Infiltration Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2777-2790, October.
    2. Ebrahimian, Hamed & Ghaffari, Parisa & Ghameshlou, Arezoo N. & Tabatabaei, Sayyed-Hassan & Alizadeh Dizaj, Amin, 2020. "Extensive comparison of various infiltration estimation methods for furrow irrigation under different field conditions," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Ortega-Farias, Samuel & Meza, Sergio Espinoza & López-Olivari, Rafael & Araya-Alman, Miguel & Carrasco-Benavides, Marcos, 2022. "Effects of four irrigation regimes on yield, fruit quality, plant water status, and water productivity in a furrow-irrigated red raspberry orchard," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Mattar, M.A. & Alazba, A.A. & Zin El-Abedin, T.K., 2015. "Forecasting furrow irrigation infiltration using artificial neural networks," Agricultural Water Management, Elsevier, vol. 148(C), pages 63-71.
    6. Mohamed Khaled Salahou & Xiyun Jiao & Haishen Lü & Weihua Guo, 2020. "An improved approach to estimating the infiltration characteristics in surface irrigation systems," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esfandiari, M. & Maheshwari, B. L. & Cornish, P. S., 1997. "Estimating recession times in furrows with small longitudinal slope on a clay soil," Agricultural Water Management, Elsevier, vol. 34(2), pages 187-193, August.
    2. Amer, Abdelmonem Mohamed, 2011. "Effects of water infiltration and storage in cultivated soil on surface irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 815-822, March.
    3. Abdelmonem M. AMER & Kamal H. AMER, 2010. "Surface irrigation management in relation to water infiltration and distribution in soils," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 5(3), pages 75-87.
    4. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Mattar, M.A. & Alazba, A.A. & Zin El-Abedin, T.K., 2015. "Forecasting furrow irrigation infiltration using artificial neural networks," Agricultural Water Management, Elsevier, vol. 148(C), pages 63-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:68:y:2004:i:1:p:19-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.