Author
Listed:
- Liu, Binrui
- He, Xinguang
- Lyu, Wenkai
- Tao, Lizhi
Abstract
Existing evapotranspiration (ET) estimation models face inherent limitations when relying solely on physics-based or data-driven paradigms. To address this issue, we propose three data-physics hybrid modeling methods for improving instantaneous ET estimation in this study. A Physics-Data Learning (PDL) model is first formed by adding a complementary physical variable generated by Penman–Monteith (PM) equation to a deep learning (DL) model along with driving variables to regress latent heat flux. Building on the PDL, a Physics-Augmented Learning (PAL) model is then formulated by introducing a physics-augmented term into the loss function. Finally, a Physics-Augmented Residual Learning (PARL) model is developed by using the residual learning technique to deeply integrate the PM and pure DL baseline models. Using the FLUXNET dataset, three proposed models are compared with the baselines on ten vegetation types (VTs) across the globe. The results show that all proposed models improve the accuracy of two baselines and reduce the uncertainty of pure DL to different extents. Among them, the PARL achieves the highest accuracy and robustness, with NSE (RMSE) ranging from 0.71–0.82 (22.40–43.14 W/m2) across ten VTs. The PAL ranks second and effectively mitigates the PDL’s sensitivity to imperfect physical knowledge. Although three proposed models show better extrapolation ability than the pure DL under conditions of limited data, the PARL stands out for its superior generalization under four created extreme climate scenarios. These results confirm the potential of data-physics hybrid modeling in ET estimation, which is conducive to supporting efficient irrigation water management.
Suggested Citation
Liu, Binrui & He, Xinguang & Lyu, Wenkai & Tao, Lizhi, 2025.
"Physics-augmented deep learning models for improving evapotranspiration estimation in global land regions,"
Agricultural Water Management, Elsevier, vol. 317(C).
Handle:
RePEc:eee:agiwat:v:317:y:2025:i:c:s0378377425003488
DOI: 10.1016/j.agwat.2025.109634
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:317:y:2025:i:c:s0378377425003488. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.