IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v316y2025ics0378377425002938.html
   My bibliography  Save this article

SHAP-powered insights into short-term drought dynamics disturbed by diurnal temperature range across China

Author

Listed:
  • Feng, Yao
  • Sun, Fubao
  • Liu, Fa

Abstract

Short-term drought dynamics are critical for agricultural production and water resource management, yet the complex role of diurnal temperature range (DTR), as a key climate variable influencing surface energy and water cycles, remains poorly understood in drought processes. This study addresses this gap by integrating a high-resolution meteorological dataset (1961–2022) into a SHapley Additive exPlanations (SHAP)-based attribution framework, quantifying DTR’s impacts on short-term drought (the monthly-scale standardized precipitation-evapotranspiration index, SPEI-1) across China’s diverse climatic zones. A significant negative correlation between monthly DTR and SPEI-1 indicates that DTR directly intensifies short-term drought conditions, an effect that has strengthened significantly since 2000. DTR influences drought through dual pathways: direct exacerbation via enhanced evapotranspiration demand and indirect modulation through negative associations with precipitation and relative humidity (RH) and positive links with sunshine duration and wind speed. In arid regions, DTR interacts synergistically with precipitation and RH to exacerbate drought, whereas in humid regions, DTR’s positive association with sunshine duration partially mitigates drought severity. Importantly, DTR is identified as the primary driver of short-term drought, followed by RH and sunshine duration. A 1°C increase in DTR reduces SPEI-1 by −0.04 to −0.26 (worsening drought), while a 1°C decrease in DTR increases SPEI-1 by 0.03–0.28 (alleviating drought), which is particularly pronounced in semi-arid, arid, and hyper-arid regions. This study advances our understanding of DTR’s multifaceted role in short-term drought dynamics and highlights the urgent need for targeted adaptation strategies, such as adaptive irrigation scheduling and water resource allocation, to mitigate drought intensification, particularly in ecologically vulnerable regions.

Suggested Citation

  • Feng, Yao & Sun, Fubao & Liu, Fa, 2025. "SHAP-powered insights into short-term drought dynamics disturbed by diurnal temperature range across China," Agricultural Water Management, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002938
    DOI: 10.1016/j.agwat.2025.109579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425002938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.