Author
Listed:
- Murumkar, Asmita
- Tapas, Mahesh
- Martin, Jay
- Kalcic, Margaret
- Shedekar, Vinayak
- Goering, Dustin
- Thorstensen, Andrea
- Boles, Chelsie
- Redder, Todd
- Confesor, Rem
Abstract
In 2016, the United States and Canada agreed to reduce phosphorus inputs to Lake Erie by 40 % to reduce the severity of Harmful Algal Blooms (HABs). These blooms have become more severe, with record events occurring in 2011 and 2015, and have compromised public safety, leading to do-not-drink advisories and negatively impacting the economy of the Western Lake Erie basin. To determine the potential benefits of avoiding nutrient application during high rainfall events compared to dry periods, we analyzed scenarios using three Soil and Water Assessment Tool (SWAT) hydrological models developed for the Maumee River Watershed. These SWAT models were developed by three different institutes and calibrated for flow and nutrient loadings at the watershed outlet. The scenarios varied the timing of nutrient (fertilizer as well as manure) applications at the hydrological response unit (HRU; smallest unit of a model) level based on the risk of rainfall events and included a (1) worst-condition scenario, in which nutrients were applied just before rain events having a high-risk of runoff and a (2) best-condition scenario, in which nutrients were applied during periods carrying a low-risk of runoff. The results demonstrate that applying nutrients during low-risk rainfall events reduced nitrate runoff by 10.9 %, total phosphorus by 1.2 %, and dissolved reactive phosphorus by 3.8 % during the spring season compared to high-risk rainfall events. While, the nitrate, total phosphorus and dissolved reactive phosphorus reductions were 6 % 0.7 % and 2.6 %, respectively on the annual scale. Additionally, nutrient application during high-risk rainfall events led to a reduction in crop yields, with soybean yields decreasing by 4.4 %, corn and rye by 3 %, and winter wheat by up to 5.5 %. These findings underscore the importance of optimizing nutrient application timing to minimize nutrient runoff and enhance crop productivity, contributing to improved water quality in the Great Lakes region.
Suggested Citation
Murumkar, Asmita & Tapas, Mahesh & Martin, Jay & Kalcic, Margaret & Shedekar, Vinayak & Goering, Dustin & Thorstensen, Andrea & Boles, Chelsie & Redder, Todd & Confesor, Rem, 2025.
"Advancing SWAT modeling with rainfall risk-based fertilizer timing to improve nutrient management and crop yields,"
Agricultural Water Management, Elsevier, vol. 316(C).
Handle:
RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002690
DOI: 10.1016/j.agwat.2025.109555
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.