Author
Listed:
- Li, Jinglin
- Liu, Shaodong
- Liu, Ruihua
- Ma, Huijuan
- Shen, Qian
- Zhang, Siping
- Ge, Changwei
- Pang, Chaoyou
Abstract
To determine the agronomic traits closely related to the drought resistance of cotton, and the universal genotypes for drought resistance in cotton. The experiment was conducted in Alaer, Xinjiang Uygur Autonomous and Dunhuang, Gansu Province between 2020 and 2021. 199 cotton genotypes were selected, six agronomic traits: plant height (PH), boll number (BN), single boll weight (SBW), lint percentage (LP), first vegetative shoot length (FVSL), seed cotton yield (SCY) were measured and analyzed. Principal component analysis (PCA) and correlation analysis were conducted on the basis of drought resistance coefficient (DC) value of each agronomic trait. The comprehensive drought coefficient (CDC), drought resistance comprehensive evaluation values (D), and weight drought resistance coefficient (WDC) values were then calculated, and multiple regression analysis was performed with the DC value as the independent variable, the CDC, D, and WDC values serving as dependent variables. Cluster analysis was conducted on the basis of the CDC, D, and WDC values. The results from Alaer and Dunhuang indicated, drought stress significantly reduced the growth of all six agronomic traits. The degree of variation between the two sites varied greatly, indicating that environmental factors affected the response of agronomic traits to drought stress. Correlation analysis revealed that there were significant differences in each agronomic trait correlation between the two sites. Principal component analysis (PCA) indicated that PH, SBW and SCY were stable across both sites, but LP and FVSL were sensitive to environment. Multivariate analysis indicated that compared with CDC and WDC values, D value objectively reflects the contribution of different agronomic traits to drought resistance, with significant differences in the equation coefficients of the six agronomic traits between the two sites. Cluster analysis grouped the 199 cotton genotypes into four groups: high drought resistance, drought resistance, drought sensitive and high drought sensitive, with different allocations at the two sites. Most genotypes exhibited significant differences in drought resistance across the two sites, just seven genotypes: UC016, UC032, UC067, UC073, UC135, UC154 and UC173, presented consistent and universal drought resistance. Among these, UC067, UC154, and UC173 presented relatively high yields and could be used as high-yield and high-drought resistant genotypes.
Suggested Citation
Li, Jinglin & Liu, Shaodong & Liu, Ruihua & Ma, Huijuan & Shen, Qian & Zhang, Siping & Ge, Changwei & Pang, Chaoyou, 2025.
"Drought resistance cotton genotypes evaluation with multi-year & multi-site study,"
Agricultural Water Management, Elsevier, vol. 316(C).
Handle:
RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002379
DOI: 10.1016/j.agwat.2025.109523
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002379. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.