Author
Listed:
- Li, Jiahui
- Xu, Xinliang
- Liu, Luo
- Deng, Xiaojuan
- Wang, Shihao
Abstract
As a key region for national food security, Northeast China (NEC) is under growing pressure to balance agricultural productivity and water availability amid global climate change and rising food demand. These challenges underscore the need for efficient, spatially targeted irrigation strategies to optimize water use and sustain crop production. In this study, we apply the Global Agro-Ecological Zones (GAEZ) model to assess the impacts of climate change and irrigation on yield potential dynamics across NEC from 2000 to 2020. We further conduct multi-scenario analysis to explore the outcomes of increasing irrigated area proportion by 10 %, 30 %, and 50 %, evaluating their effects on yield gap closure and climate change mitigation. Our results show an average annual increase in yield potential of 56.36 kg·ha−1·a−1 across the region. Climate change caused a 1.23 % loss in multi-year total yield potential, with 68.28 % of these losses occurring in rainfed areas, while 80.54 % of yield gains were observed in irrigated areas. Except for rice, which experienced moderate gains (49.31 kg·ha⁻¹ annually), other major crops—particularly maize and soybeans—were negatively affected by climate trends. Irrigation offset nearly 4.81 times the total climate-induced yield losses, although its positive impact has declined over time. Among the scenarios, a 30 % increase in irrigated area proportion demonstrated the greatest potential, particularly for maize. Under this scenario, yield gaps could be closed and climate-induced losses fully compensated in 16.32 % and 17.82 % of NEC croplands, respectively, primarily in the southern Songnen Plain, Liao River Plain and Greater Khingan Mountains Region. These findings provide a scientific basis for optimizing irrigation strategies to ensure food security and promote sustainable water resource management.
Suggested Citation
Li, Jiahui & Xu, Xinliang & Liu, Luo & Deng, Xiaojuan & Wang, Shihao, 2025.
"Impact of irrigation on cropland yield potential and scenario-based optimization in Northeast China,"
Agricultural Water Management, Elsevier, vol. 314(C).
Handle:
RePEc:eee:agiwat:v:314:y:2025:i:c:s0378377425002367
DOI: 10.1016/j.agwat.2025.109522
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:314:y:2025:i:c:s0378377425002367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.