Author
Listed:
- Carmassi, Giulia
- Cialli, Susanna
- Cela, Fatjon
- Baeza Romero, Esteban
- Gallardo, Marisa
- Incrocci, Luca
Abstract
This study explores the application of the VegSyst v3 model, developed in Spain for greenhouse soil-grown vegetable crops, to estimate dry matter production (DMP), evapotranspiration (ETc), and nutrient uptake in spring greenhouse soilless tomato in Italy. The cultivar Pisanello was chosen because it is particularly popular within the Tuscan region. The original VegSyst v3 model was calibrated to specific growing conditions in the Tuscan region for radiation use efficiency (RUE=3.90 and 2.20 after detopping instead of RUE=4.01) and crop coefficient (kc=1.45 instead of 1.00). The Almeria radiation model was used to estimate greenhouse reference evapotranspiration (ET0). New dilution curves for magnesium (Mg) and phosphorus (P), expressed by the power equation %Mg = 0.60 × DMP^(-0.200) (R² = 0.94), and %P = 0.55 × DMP^(-150) (R² = 0.98), were introduced. These recalibrated Mg and P curves performed better in soilless system than the original dilution curve from VegSyst v3. The calibrated model demonstrated accurate predictions for DMP, ETc, the uptake of all macronutrients (N, P, K, Ca, Mg), and the uptake concentrations throughout the tomato-crop spring seasons. Moreover, the model was also preliminarily validated in a commercial farm of soilless tomato cultivation. The recalibrated VegSyst v3 model could be incorporated into a Decision Support System (DSS) to provide recommendations to farmers in Tuscany for managing the nutrient solution composition for soilless tomato crops in greenhouses.
Suggested Citation
Carmassi, Giulia & Cialli, Susanna & Cela, Fatjon & Baeza Romero, Esteban & Gallardo, Marisa & Incrocci, Luca, 2025.
"Use of the VegSyst v3 model to simulate seasonal dry matter production, uptake of nutrients, and evapotranspiration in a greenhouse soilless tomato crop in Tuscany,"
Agricultural Water Management, Elsevier, vol. 314(C).
Handle:
RePEc:eee:agiwat:v:314:y:2025:i:c:s0378377425002227
DOI: 10.1016/j.agwat.2025.109508
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:314:y:2025:i:c:s0378377425002227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.