Author
Listed:
- Huang, Hangxing
- Kang, Jian
- Chen, Jinliang
- Ding, Risheng
- Lu, Hongna
- Wu, Siyu
- Kang, Shaozhong
Abstract
The leaf rolling index (LRI) is a phenotype with significant physiological implications under drought stress. However, research on the quantification of the cotton LRI is lacking, limiting its application in drought diagnosis, irrigation guidance, and physiological assessments. This study conducted a 3D reconstruction of cotton using Structure from Motion (SFM) and Multi-View Stereo (MVS). Algorithms for leaf point cloud preprocessing and phenotype extraction were developed using the PCL point cloud library and integrated into software to calculate the leaf area and perimeter. The LRI was quantified in 3D space based on the point cloud area ratio. On this basis, we analyze the relationships between LRI and leaf physiological indicators such as leaf water potential (LWP), relative water content (RWC), stomatal conductance (gs), and electron transport rate (ETR) at the seedling and flowering stages. The results indicate that the cotton LRI provides a stable indicator of drought stress, which is mainly reflected in the stable correlation between the LRI and water physiological parameters (LWP, and RWC), with coefficients of determination (R²) exceeding 0.70. Furthermore, the correlation between the LRI and the ETR suggests that the LRI could be used to assess photosynthetic efficiency under drought stress. This study demonstrates that LRI based on 3D vision in cotton may serve as a reliable morphological indicator for indicating drought stress and evaluating photosynthetic efficiency.
Suggested Citation
Huang, Hangxing & Kang, Jian & Chen, Jinliang & Ding, Risheng & Lu, Hongna & Wu, Siyu & Kang, Shaozhong, 2024.
"A new 3D vision-based leaf rolling index (LRI) and its application as a stable indicator of cotton drought stress,"
Agricultural Water Management, Elsevier, vol. 306(C).
Handle:
RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005109
DOI: 10.1016/j.agwat.2024.109174
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005109. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.