IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp83-90.html
   My bibliography  Save this article

Repellency-induced runoff from New Zealand hill country under pasture: A plot study

Author

Listed:
  • Bretherton, Michael
  • Horne, David
  • Sumanasena, H.A.
  • Jeyakumar, Paramsothy
  • Scotter, David

Abstract

Soil water repellency is a common phenomenon which develops when surface soils become dry in summer and autumn. It is claimed that repellency is likely to result in a lower infiltration rate and a concomitant increase in surface runoff, particularly on slopes. This study quantifies the effect of water repellency on runoff from a series of small plots on a range of slopes (20° and 30°) and aspects (N, S and E) in a hilly landscape in the south-east of the North Island of New Zealand. The plots (1 m wide and 2 m long) were set up to capture runoff via a slotted PVC pipe and measure it using tipping bucket apparatus: at each of the slope/aspect locations there were duplicate plots. A meteorological station was also established at the site along with TDR probes to measure soil moisture down to 300 mm depth. When moist, the soil at the site had a very high infiltrability (>1.5 mm/min). On nine occasions, runoff was measured (ranging from 1 to 59% of rainfall) when the soil surface was dry and rainfall was intense (greater than 0.1 mm/min). However, during the two-year study period, this repellency-induced runoff equated to only 5% of the total rainfall. Furthermore, the infiltration rate of initially dry, repellent soil (ranging from 0.2 to 0.6 mm/min) partly recovered over a ten-minute period (0.6–1.0 mm/min) and, with sufficient rainfall, repellency completely disappeared within two days. The transitory nature of water repellency was confirmed in an experiment on large soil slabs conducted in the laboratory where repellency-induced runoff was observed to largely disappear over a period of 30 min. Overall, it is concluded that soil water repellency does not play a major role in the soil water balance of the hill country at the study site.

Suggested Citation

  • Bretherton, Michael & Horne, David & Sumanasena, H.A. & Jeyakumar, Paramsothy & Scotter, David, 2018. "Repellency-induced runoff from New Zealand hill country under pasture: A plot study," Agricultural Water Management, Elsevier, vol. 201(C), pages 83-90.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:83-90
    DOI: 10.1016/j.agwat.2018.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:83-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.