IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v192y2017icp103-114.html
   My bibliography  Save this article

Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system

Author

Listed:
  • Karki, Ritesh
  • Tagert, Mary Love M.
  • Paz, Joel O.
  • Bingner, Ronald L.

Abstract

Annualized Agricultural Non-Point Source Pollutant Model (AnnAGNPS) is a watershed-scale, continuous simulation, physical model that has been widely used to simulate runoff, nutrients, sediment, and pesticides in different watersheds. This study applied AnnAGNPS to simulate runoff, nutrients (total Nitrogen and total Phosphorus), and sediment from an agricultural watershed of 30.3ha in East-Central Mississippi. AnnAGNPS was then used to evaluate an On-Farm Water Storage (OFWS) system as a Best Management Practice (BMP) for nutrient and sediment loading control from agricultural fields within this watershed and as a source of water for irrigation. An R2 of 0.85 and E of 0.82 in daily runoff estimation showed that the model can adequately simulate runoff from watersheds in East-Central Mississippi. In addition, an R2 of 0.88 and E of 0.67 for event-based sediment estimation and an R2 of 0.74 and E of 0.54 for monthly phosphorus estimation also showed that the model can satisfactorily simulate sediment and phosphorus. However, the model was not able to simulate nitrogen at a monthly scale, with an R2 of only 0.15 and E of −0.107, because of the lack of site specific and accurate input data. After AnnAGNPS successfully simulated runoff, sediment, and phosphorus, an evaluation of the OFWS system showed that the system was able to capture 220,000m3 of runoff from the monitored watershed that can be stored and used for irrigation. AnnAGNPS estimated that the OFWS system also captured 46 tons of sediment and 558kg of phosphorus during the monitoring period, preventing downstream nutrient and sediment pollution.

Suggested Citation

  • Karki, Ritesh & Tagert, Mary Love M. & Paz, Joel O. & Bingner, Ronald L., 2017. "Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system," Agricultural Water Management, Elsevier, vol. 192(C), pages 103-114.
  • Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:103-114
    DOI: 10.1016/j.agwat.2017.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuan Luo & Zhaofu Li & Hengpeng Li & Xiaomin Chen, 2015. "Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake," IJERPH, MDPI, vol. 12(9), pages 1-19, September.
    2. R. L. Bingner & R. R. Wells & H. G. Momm & J. R. Rigby & F. D. Theurer, 2016. "Ephemeral gully channel width and erosion simulation technology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1949-1966, February.
    3. Momm, Henrique G. & Bingner, Ronald L. & Moore, Katy & Herring, Glenn, 2022. "Integrated surface and groundwater modeling to enhance water resource sustainability in agricultural watersheds," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    5. Momm, H.G. & Porter, W.S. & Yasarer, L.M. & ElKadiri, R. & Bingner, R.L. & Aber, J.W., 2019. "Crop conversion impacts on runoff and sediment loads in the Upper Sunflower River watershed," Agricultural Water Management, Elsevier, vol. 217(C), pages 399-412.
    6. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    7. Zhang, Junlong & Li, Yongping & You, Li & Huang, Guohe & Xu, Xiaomei & Wang, Xiaoya, 2022. "Optimizing effluent trading and risk management schemes considering dual risk aversion for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Jialin Liu & Fangyan Cheng & Yi Zhu & Qun Zhang & Qing Song & Xinhong Cui, 2022. "Urban Land-Use Type Influences Summertime Water Quality in Small- and Medium-Sized Urban Rivers: A Case Study in Shanghai, China," Land, MDPI, vol. 11(4), pages 1-14, April.
    9. Zhang, J.L. & Li, Y.P. & Wang, C.X. & Huang, G.H., 2015. "An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources," Agricultural Water Management, Elsevier, vol. 152(C), pages 72-90.
    10. Villamizar, Martha L. & Brown, Colin D., 2016. "Modelling triazines in the valley of the River Cauca, Colombia, using the annualized agricultural non-point source pollution model," Agricultural Water Management, Elsevier, vol. 177(C), pages 24-36.
    11. R. Bingner & R. Wells & H. Momm & J. Rigby & F. Theurer, 2016. "Ephemeral gully channel width and erosion simulation technology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1949-1966, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:103-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.