IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v165y2016icp22-32.html
   My bibliography  Save this article

NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake

Author

Listed:
  • Neocleous, Damianos
  • Savvas, Dimitrios

Abstract

To optimize nutrient supply in melon (Cucumis melo L.) cultivated in closed-loop hydroponic systems under Mediterranean climatic conditions, the process of salinity build-up has to be better understood. To attain this objective, two experiments were conducted in two cropping seasons (winter–spring and spring–summer) in order to: (i) establish relationships between Na+ and Cl− concentrations in the root zone and uptake concentrations (UC) of Na+ and Cl−, respectively, i.e., Na+/water and Cl−/water uptake ratios, and (ii) test whether macronutrient UC in melon grown in closed hydroponic systems are influenced by the gradual salinity build-up. Three different NaCl concentrations in the irrigation water used to prepare nutrient solutions, i.e., 0.7, 2.5, and 5mM, were applied. The UC of Na+ and Cl− increased over time but at a certain time point in the cropping cycle they converged to a plateau corresponding to the salinity treatment. Exponential relationships between the Na+ and Cl− concentrations in the root zone and the UC of Na+ and Cl−, respectively, were fitted to experimental results in both experiments. However, parameterization of the model with data from the high-transpiration season revealed superiority. The established model parameters corresponded well over the whole melon cultivation cycle and a wide range of climatic conditions. The NaCl-salinity up to the tested level had no significant effect on the UC of macronutrients (i.e., N, P, K, Ca and Mg). The mean UC of Ca and N were higher than those reported under northern-European climatic conditions. The obtained results may be used through on-line operating decision support systems to optimize nutrient supply and minimize salinity impacts in melon grown in closed hydroponic systems when the quality of the irrigation water is sub-optimal.

Suggested Citation

  • Neocleous, Damianos & Savvas, Dimitrios, 2016. "NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake," Agricultural Water Management, Elsevier, vol. 165(C), pages 22-32.
  • Handle: RePEc:eee:agiwat:v:165:y:2016:i:c:p:22-32
    DOI: 10.1016/j.agwat.2015.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massa, D. & Incrocci, L. & Maggini, R. & Carmassi, G. & Campiotti, C.A. & Pardossi, A., 2010. "Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 97(7), pages 971-980, July.
    2. Varlagas, H. & Savvas, D. & Mouzakis, G. & Liotsos, C. & Karapanos, I. & Sigrimis, N., 2010. "Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity," Agricultural Water Management, Elsevier, vol. 97(9), pages 1242-1250, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
    2. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Yang, Zhi & Kong, Tingting & Xie, Jiarui & Yang, Taiguo & Jiang, Yu & Feng, Ziqi & Zhang, Zhi, 2023. "Appropriate water and fertilizer supply can increase yield by promoting growth while ensuring the soil ecological environment in melon production," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Cedeño, J. & Magán, J.J. & Thompson, R.B. & Fernández, M.D. & Gallardo, M., 2023. "Reducing nutrient loss in drainage from tomato grown in free-draining substrate in greenhouses using dynamic nutrient management," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Incrocci, Luca & Marzialetti, Paolo & Incrocci, Giorgio & Di Vita, Andrea & Balendonck, Jos & Bibbiani, Carlo & Spagnol, Serafino & Pardossi, Alberto, 2014. "Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 30-40.
    3. Venezia, Accursio & Colla, Giuseppe & Di Cesare, Carlo & Stipic, Marija & Massa, Daniele, 2022. "The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Massa, Daniele & Magán, Juan José & Montesano, Francesco Fabiano & Tzortzakis, Nikolaos, 2020. "Minimizing water and nutrient losses from soilless cropping in southern Europe," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Blok, Chris & Voogt, Wim & Barbagli, Tommaso, 2023. "Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Anderson Fernando Wamser & Arthur Bernardes Cecilio Filho & Rodrigo Hiyoshi Dalmazzo Nowaki & Juan Waldir Mendoza-Cortez & Miguel Urrestarazu, 2017. "Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
    7. Neocleous, Damianos & Savvas, Dimitrios, 2018. "Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses," Agricultural Water Management, Elsevier, vol. 203(C), pages 197-206.
    8. Puccinelli, Martina & Carmassi, Giulia & Pardossi, Alberto & Incrocci, Luca, 2023. "Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Artur Mielcarek & Karolina Kłobukowska & Joanna Rodziewicz & Wojciech Janczukowicz & Kamil Łukasz Bryszewski, 2023. "Water Nutrient Management in Soilless Plant Cultivation versus Sustainability," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    10. Santos, Miguel G. & Moreira, Germano S. & Pereira, Ruth & Carvalho, Susana M.P., 2022. "Assessing the potential use of drainage from open soilless production systems: A case study from an agronomic and ecotoxicological perspective," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:165:y:2016:i:c:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.