IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v156y2015icp1-9.html
   My bibliography  Save this article

Differences in water-use-efficiency between two Vitis vinifera cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress

Author

Listed:
  • Martorell, S.
  • Diaz-Espejo, A.
  • Tomàs, M.
  • Pou, A.
  • El Aou-ouad, H.
  • Escalona, J.M.
  • Vadell, J.
  • Ribas-Carbó, M.
  • Flexas, J.
  • Medrano, H.

Abstract

Knowledge about regulation of stomatal conductance is necessary to improve grapevine water use efficiency. The vast range of grapevine cultivars may allow choosing the best-performing ones to global changing conditions provided the understanding and characterization of their physiological responses. In this study, a comparison between two cultivars (Tempranillo and Grenache) with different reputation in water use efficiency was performed during two experimental years in field-conditions. Water relations, leaf gas exchange and abscisic acid (ABA) dynamics were measured at different phenological stages along the growing seasons. A clear difference in the regulation of leaf water relations was observed between cultivars under water stress conditions. Specifically, results showed that there is a clear relationship between hydraulic conductance (Kh) and stomatal regulation. However, ABA can exert a differentiating role on stomatal control during different stages within the grapevine growth period. Furthermore, this study showed that differences in osmotic adjustment could lead to substantial differentiation in the stomatal regulation and the leaf water use efficiency.

Suggested Citation

  • Martorell, S. & Diaz-Espejo, A. & Tomàs, M. & Pou, A. & El Aou-ouad, H. & Escalona, J.M. & Vadell, J. & Ribas-Carbó, M. & Flexas, J. & Medrano, H., 2015. "Differences in water-use-efficiency between two Vitis vinifera cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress," Agricultural Water Management, Elsevier, vol. 156(C), pages 1-9.
  • Handle: RePEc:eee:agiwat:v:156:y:2015:i:c:p:1-9
    DOI: 10.1016/j.agwat.2015.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    2. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    3. Zarrouk, Olfa & Garcia-Tejero, Ivan & Pinto, Clara & Genebra, Tania & Sabir, Farzana & Prista, Catarina & David, Teresa Soares & Loureiro-Dias, Maria C. & Chave, Maria Manuela, 2016. "Aquaporins isoforms in cv. Touriga Nacional grapevine under water stress and recovery—Regulation of expression in leaves and roots," Agricultural Water Management, Elsevier, vol. 164(P1), pages 167-175.
    4. Bota, J. & Tomás, M. & Flexas, J. & Medrano, H. & Escalona, J.M., 2016. "Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress," Agricultural Water Management, Elsevier, vol. 164(P1), pages 91-99.
    5. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    6. Tortosa, Ignacio & Escalona, José Mariano & Douthe, Cyril & Pou, Alicia & Garcia-Escudero, Enrique & Toro, Guillermo & Medrano, Hipólito, 2019. "The intra-cultivar variability on water use efficiency at different water status as a target selection in grapevine: Influence of ambient and genotype," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:156:y:2015:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.