IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v8y2005i2p235-250.html
   My bibliography  Save this article

Adaptive MCMC methods for inference on affine stochastic volatility models with jumps

Author

Listed:
  • Davide Raggi

Abstract

In this paper we propose an efficient Markov chain Monte Carlo (MCMC) algorithm to estimate stochastic volatility models with jumps and affine structure. Our idea relies on the use of adaptive methods that aim at reducing the asymptotic variance of the estimates. We focus on the Delayed Rejection algorithm in order to find accurate proposals and to efficiently simulate the volatility path. Furthermore, Bayesian model selection is addressed through the use of reduced runs of the MCMC together with an auxiliary particle filter necessary to evaluate the likelihood function. An empirical application based on the study of the Dow Jones Composite 65 and of the FTSE 100 financial indexes is presented to study some empirical properties of the algorithm implemented. Copyright 2005 Royal Economic Society

Suggested Citation

  • Davide Raggi, 2005. "Adaptive MCMC methods for inference on affine stochastic volatility models with jumps," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 235-250, July.
  • Handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:235-250
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2005.00162.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:235-250. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.