IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v7y2004i2p618-627.html
   My bibliography  Save this article

Identification of causal factor models of stationary time series

Author

Listed:
  • Chris Heaton
  • Victor Solo

Abstract

We consider identification of a class of dynamic factor model. We show that identification holds under reasonably general conditions. The results apply to many of the dynamic factor models that have appeared in the literature and to many worthwhile generalizations of those models. Copyright Royal Economic Socciety 2004

Suggested Citation

  • Chris Heaton & Victor Solo, 2004. "Identification of causal factor models of stationary time series," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 618-627, December.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:618-627
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=ectj&volume=7&issue=2&year=2004&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heaton, Chris & Oslington, Paul, 2010. "Micro vs macro explanations of post-war US unemployment movements," Economics Letters, Elsevier, vol. 106(2), pages 87-91, February.
    2. Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2016. "Fast ML Estimation of Dynamic Bifactor Models: An Application to European Inflation," Advances in Econometrics,in: Dynamic Factor Models, volume 35, pages 215-282 Emerald Publishing Ltd.
    3. Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2014. "A Spectral EM Algorithm for Dynamic Factor Models," Working Papers wp2014_1411, CEMFI.
    4. Gabriele Fiorentini & Enrique Sentana, 2013. "Dynamic Specification Tests for Dynamic Factor Models," Working Papers wp2013_1306, CEMFI.
    5. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    6. repec:eee:insuma:v:75:y:2017:i:c:p:117-125 is not listed on IDEAS
    7. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:618-627. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.