IDEAS home Printed from https://ideas.repec.org/a/dbk/medicw/v3y2024ip68id68.html
   My bibliography  Save this article

Exploration of Scientific Documents through Unsupervised Learning-Based Segmentation Techniques

Author

Listed:
  • Mohamed Cherradi
  • Anass El Haddadi

Abstract

Navigating the extensive landscape of scientific literature presents a significant challenge, prompting the development of innovative methodologies for efficient exploration. Our study introduces a pioneering approach for unsupervised segmentation, aimed at revealing thematic trends within articles and enhancing the accessibility of scientific knowledge. Leveraging three prominent clustering algorithms—K-Means, Hierarchical Agglomerative, and DBSCAN—we demonstrate their proficiency in generating meaningful clusters, validated through assessment metrics including Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index. Methodologically, comprehensive web scraping of scientific databases, coupled with thorough data cleaning and preprocessing, forms the foundation of our approach. The efficacy of our methodology in accurately identifying scientific domains and uncovering interdisciplinary connections underscores its potential to revolutionize the exploration of scientific publications. Future endeavors will further explore alternative unsupervised algorithms and extend the methodology to diverse data sources, fostering continuous innovation in scientific knowledge organization

Suggested Citation

Handle: RePEc:dbk:medicw:v:3:y:2024:i::p:68:id:68
DOI: 10.56294/mw202468
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:medicw:v:3:y:2024:i::p:68:id:68. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://mw.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.