IDEAS home Printed from https://ideas.repec.org/a/das/njaigs/v1y2024i1id36.html
   My bibliography  Save this article

Deep Reinforcement Learning Unleashing the Power of AI in Decision-Making

Author

Listed:
  • Jeff Shuford

Abstract

Deep Reinforcement Learning (DRL) has emerged as a transformative paradigm in the field of artificial intelligence (AI), offering unprecedented capabilities in decision-making across diverse domains. This article explores the profound impact of DRL on enhancing the decision-making capabilities of AI systems, elucidating its underlying principles, applications, and implications.DRL represents a fusion of deep learning and reinforcement learning, enabling machines to learn complex behaviors and make decisions by interacting with their environment. The utilization of neural networks allows DRL algorithms to handle high-dimensional input spaces, making it well-suited for tasks that involve intricate decision-making processes.One of the key strengths of DRL lies in its ability to address problems with sparse and delayed rewards, common challenges in traditional reinforcement learning. Through a process of trial and error, DRL algorithms can learn optimal decision strategies by navigating through a vast decision space, adapting to dynamic environments, and maximizing cumulative rewards over time.The applications of DRL span various domains, including robotics, finance, healthcare, gaming, and autonomous systems. In robotics, DRL facilitates the development of intelligent agents capable of autonomously navigating complex environments, performing intricate tasks, and adapting to unforeseen circumstances. In finance, DRL is leveraged for portfolio optimization, algorithmic trading, and risk management, demonstrating its potential to revolutionize traditional financial strategies.

Suggested Citation

  • Jeff Shuford, 2024. "Deep Reinforcement Learning Unleashing the Power of AI in Decision-Making," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 1(1).
  • Handle: RePEc:das:njaigs:v:1:y:2024:i:1:id:36
    as

    Download full text from publisher

    File URL: https://newjaigs.com/index.php/JAIGS/article/view/36
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:das:njaigs:v:1:y:2024:i:1:id:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Open Knowledge (email available below). General contact details of provider: https://newjaigs.com/index.php/JAIGS/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.