IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v9y2021is1ps23-s60_3.html
   My bibliography  Save this article

Learning to count: A deep learning framework for graphlet count estimation

Author

Listed:
  • Liu, Xutong
  • Chen, Yu-Zhen Janice
  • Lui, John C. S.
  • Avrachenkov, Konstantin

Abstract

Graphlet counting is a widely explored problem in network analysis and has been successfully applied to a variety of applications in many domains, most notatbly bioinformatics, social science, and infrastructure network studies. Efficiently computing graphlet counts remains challenging due to the combinatorial explosion, where a naive enumeration algorithm needs O(Nk) time for k-node graphlets in a network of size N. Recently, many works introduced carefully designed combinatorial and sampling methods with encouraging results. However, the existing methods ignore the fact that graphlet counts and the graph structural information are correlated. They always consider a graph as a new input and repeat the tedious counting procedure on a regular basis even if it is similar or exactly isomorphic to previously studied graphs. This provides an opportunity to speed up the graphlet count estimation procedure by exploiting this correlation via learning methods. In this paper, we raise a novel graphlet count learning (GCL) problem: given a set of historical graphs with known graphlet counts, how to learn to estimate/predict graphlet count for unseen graphs coming from the same (or similar) underlying distribution. We develop a deep learning framework which contains two convolutional neural network models and a series of data preprocessing techniques to solve the GCL problem. Extensive experiments are conducted on three types of synthetic random graphs and three types of real-world graphs for all 3-, 4-, and 5-node graphlets to demonstrate the accuracy, efficiency, and generalizability of our framework. Compared with state-of-the-art exact/sampling methods, our framework shows great potential, which can offer up to two orders of magnitude speedup on synthetic graphs and achieve on par speed on real-world graphs with competitive accuracy.

Suggested Citation

  • Liu, Xutong & Chen, Yu-Zhen Janice & Lui, John C. S. & Avrachenkov, Konstantin, 2021. "Learning to count: A deep learning framework for graphlet count estimation," Network Science, Cambridge University Press, vol. 9(S1), pages 23-60, October.
  • Handle: RePEc:cup:netsci:v:9:y:2021:i:s1:p:s23-s60_3
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124220000351/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:9:y:2021:i:s1:p:s23-s60_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.