IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v4y2016i03p273-292_00.html
   My bibliography  Save this article

Node-independent elementary signaling modes: A measure of redundancy in Boolean signaling transduction networks

Author

Listed:
  • SUN, ZHONGYAO
  • ALBERT, RÉKA

Abstract

The redundancy of a system denotes the amount of duplicate components or mechanisms in it. For a network, especially one in which mass or information is being transferred from an origin to a destination, redundancy is related to the robustness of the system. Existing network measures of redundancy rely on local connectivity (e.g. clustering coefficients) or the existence of multiple paths. As in many systems there are functional dependencies between components and paths, a measure that not only characterizes the topology of a network, but also takes into account these functional dependencies, becomes most desirable. We propose a network redundancy measure in a prototypical model that contains functionally dependent directed paths: a Boolean model of a signal transduction network. The functional dependencies are made explicit by using an expanded network and the concept of elementary signaling modes (ESMs). We define the redundancy of a Boolean signal transduction network as the maximum number of node-independent ESMs and develop a methodology for identifying all maximal node-independent ESM combinations. We apply our measure to a number of signal transduction network models and show that it successfully distills known properties of the systems and offers new functional insights. The concept can be easily extended to similar related forms, e.g. edge-independent ESMs.

Suggested Citation

  • Sun, Zhongyao & Albert, Rã‰Ka, 2016. "Node-independent elementary signaling modes: A measure of redundancy in Boolean signaling transduction networks," Network Science, Cambridge University Press, vol. 4(3), pages 273-292, September.
  • Handle: RePEc:cup:netsci:v:4:y:2016:i:03:p:273-292_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124216000047/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:4:y:2016:i:03:p:273-292_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.