IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v13y2025ip-_8.html
   My bibliography  Save this article

Accounting for edge uncertainty in stochastic actor-oriented models for dynamic network analysis

Author

Listed:
  • Shappell, Heather M.
  • Kramer, Mark A.
  • Chu, Catherine J.
  • Kolaczyk, Eric D.

Abstract

Stochastic actor-oriented models (SAOMs) were designed in the social network setting to capture network dynamics representing a variety of influences on network change. The standard framework assumes the observed networks are free of false positive and false negative edges, which may be an unrealistic assumption. We propose a hidden Markov model (HMM) extension to these models, consisting of two components: 1) a latent model, which assumes that the unobserved, true networks evolve according to a Markov process as they do in the SAOM framework; and 2) a measurement model, which describes the conditional distribution of the observed networks given the true networks. An expectation-maximization algorithm is developed for parameter estimation. We address the computational challenge posed by a massive discrete state space, of a size exponentially increasing in the number of vertices, through the use of the missing information principle and particle filtering. We present results from a simulation study, demonstrating our approach offers improvement in accuracy of estimation, in contrast to the standard SAOM, when the underlying networks are observed with noise. We apply our method to functional brain networks inferred from electroencephalogram data, revealing larger effect sizes when compared to the naive approach of fitting the standard SAOM.

Suggested Citation

  • Shappell, Heather M. & Kramer, Mark A. & Chu, Catherine J. & Kolaczyk, Eric D., 2025. "Accounting for edge uncertainty in stochastic actor-oriented models for dynamic network analysis," Network Science, Cambridge University Press, vol. 13, pages 1-1, January.
  • Handle: RePEc:cup:netsci:v:13:y:2025:i::p:-_8
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124225000062/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:13:y:2025:i::p:-_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.