IDEAS home Printed from
   My bibliography  Save this article

Unemployment Persistence And Quantile Parameter Heterogeneity


  • Andini, Corrado
  • Andini, Monica


We argue that a random-coefficients representation of the classical Barro's model of unemployment dynamics can be used as a theoretical basis for a panel quantile autoregressive model of the unemployment rate. Estimating the latter with State-level data for the United States (1980–2010), we find that (i) unemployment persistence increases along quantiles of the conditional unemployment distribution; (ii) disregarding State-fixed effects implies an overestimation of unemployment persistence along unemployment quantiles; (iii) a macroeconomic shock changes not only the location but also the dispersion of the distribution of the State unemployment rates; (iv) a federal policy equally applied in each State can reduce unemployment inequality among States; (v) “hysteresis†and “natural rate†hypotheses can co-exist along quantiles of the unemployment distribution, with the former being not rejected at upper quantiles. In sum, while the standard approach to the estimation of unemployment persistence implicitly assumes that quantile parameter heterogeneity does not matter, we suggest that it does.

Suggested Citation

  • Andini, Corrado & Andini, Monica, 2018. "Unemployment Persistence And Quantile Parameter Heterogeneity," Macroeconomic Dynamics, Cambridge University Press, vol. 22(5), pages 1298-1320, July.
  • Handle: RePEc:cup:macdyn:v:22:y:2018:i:05:p:1298-1320_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Saša Obradović & Lela Ristić & Nemanja Lojanica, 2018. "Are unemployment rates stationary for SEE10 countries? Evidence from linear and nonlinear dynamics," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics, vol. 36(2), pages 559-583.
    2. Galina Besstremyannaya & Sergei Golovan, 2019. "Reconsideration of a simple approach to quantile regression for panel data: a comment on the Canay (2011) fixed effects estimator," Working Papers w0249, New Economic School (NES).
    3. Galina Besstremyannaya & Sergei Golovan, 2019. "Reconsideration of a simple approach to quantile regression for panel data: a comment on the Canay (2011) fixed effects estimator," Working Papers w0249, Center for Economic and Financial Research (CEFIR).

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:22:y:2018:i:05:p:1298-1320_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.