IDEAS home Printed from https://ideas.repec.org/a/cup/judgdm/v16y2021i2p505-550_10.html
   My bibliography  Save this article

Denotative and connotative management of uncertainty: A computational dual-process model

Author

Listed:
  • Hoey, Jesse
  • MacKinnon, Neil J.
  • Schröder, Tobias

Abstract

The interplay between intuitive and deliberative processing is known to be important for human decision making. As independent modes, intuitive processes can take on many forms from associative to constructive, while deliberative processes often rely on some notion of decision theoretic rationality or pattern matching. Dual process models attempt to unify these two modes based on parallel constraint networks or on socially or emotionally oriented adjustments to utility functions. This paper presents a new kind of dual process model that unifies decision theoretic deliberative reasoning with intuitive reasoning based on shared cultural affective meanings in a single Bayesian sequential model. Agents constructed according to this unified model are motivated by a combination of affective alignment (intuitive) and decision theoretic reasoning (deliberative), trading the two off as a function of the uncertainty or unpredictability of the situation. The model also provides a theoretical bridge between decision-making research and sociological symbolic interactionism. Starting with a high-level view of existing models, we advance Bayesian Affect Control Theory (BayesACT) as a promising new type of dual process model that explicitly and optimally (in the Bayesian sense) trades off motivation, action, beliefs and utility. We demonstrate a key component of the model as being sufficient to account for some aspects of classic cognitive biases about fairness and dissonance, and outline how this new theory relates to parallel constraint satisfaction models.

Suggested Citation

  • Hoey, Jesse & MacKinnon, Neil J. & Schröder, Tobias, 2021. "Denotative and connotative management of uncertainty: A computational dual-process model," Judgment and Decision Making, Cambridge University Press, vol. 16(2), pages 505-550, March.
  • Handle: RePEc:cup:judgdm:v:16:y:2021:i:2:p:505-550_10
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1930297500008652/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:judgdm:v:16:y:2021:i:2:p:505-550_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/jdm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.