IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i03p551-577_00.html
   My bibliography  Save this article

Identification Of Discrete Choice Dynamic Programming Models With Nonparametric Distribution Of Unobservables

Author

Listed:
  • Chen, Le-Yu

Abstract

This paper presents semiparametric identification results for the Rust (1994) class of discrete choice dynamic programming (DCDP) models. We develop sufficient conditions for identification of the deep structural parameters for the case where the per-period utility function ascribed to one choice in the model is parametric but the distribution of unobserved state variables is nonparametric. The proposed identification strategy does not rely on availability of the terminal period data and can therefore be applied to infinite horizon structural dynamic models. Identifying power comes from assuming that the agent’s per-period utilities admit continuous choice-specific state variables that are observed with sufficient variation and satisfy certain conditional independence assumptions on the joint time series of observables. These conditions allow us to formulate exclusion restrictions for identifying the primitive structural functions of the model.

Suggested Citation

  • Chen, Le-Yu, 2017. "Identification Of Discrete Choice Dynamic Programming Models With Nonparametric Distribution Of Unobservables," Econometric Theory, Cambridge University Press, vol. 33(3), pages 551-577, June.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:551-577_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466616000049/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza‐Rodrigues, 2021. "Identification of counterfactuals in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 12(2), pages 351-403, May.
    3. Erhao Xie, 2022. "Nonparametric Identification of Incomplete Information Discrete Games with Non-equilibrium Behaviors," Staff Working Papers 22-22, Bank of Canada.
    4. Komarova, Tatiana & Sanches, Fábio Adriano & Silva Junior, Daniel & Srisuma, Sorawoot, 2018. "Joint analysis of the discount factor and payoff parameters in dynamic discrete choice games," LSE Research Online Documents on Economics 86858, London School of Economics and Political Science, LSE Library.
    5. Victor Aguirregabiria & Allan Collard-Wexler & Stephen P. Ryan, 2021. "Dynamic Games in Empirical Industrial Organization," NBER Working Papers 29291, National Bureau of Economic Research, Inc.
    6. Kalouptsidi, Myrto & Souza-Rodrigues, Eduardo & Scott, Paul, 2017. "Identification of Counterfactuals in Dynamic Discrete Choice Models," CEPR Discussion Papers 12470, C.E.P.R. Discussion Papers.
    7. Higgins, Ayden & Jochmans, Koen, 2023. "Identification of mixtures of dynamic discrete choices," Journal of Econometrics, Elsevier, vol. 237(1).
    8. Buchholz, Nicholas & Shum, Matthew & Xu, Haiqing, 2021. "Semiparametric estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 223(2), pages 312-327.
    9. Schiraldi, Pasquale & Levy, Matthew R., 2020. "Identification of intertemporal preferences in history-dependent dynamic discrete choice models," CEPR Discussion Papers 14447, C.E.P.R. Discussion Papers.
    10. Schneider, Ulrich, 2019. "Identification of Time Preferences in Dynamic Discrete Choice Models: Exploiting Choice Restrictions," MPRA Paper 102137, University Library of Munich, Germany, revised 29 Jul 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:03:p:551-577_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.