IDEAS home Printed from
   My bibliography  Save this article

Oracle-Efficient Nonparametric Estimation Of An Additive Model With An Unknown Link Function


  • Horowitz, Joel L.
  • Mammen, Enno


This paper describes an estimator of the additive components of a nonparametric additive model with an unknown link function. When the additive components and link function are twice differentiable with sufficiently smooth second derivatives, the estimator is asymptotically normally distributed with a rate of convergence in probability of n −2/5 . This is true regardless of the (finite) dimension of the explanatory variable. Thus, the estimator has no curse of dimensionality. Moreover, the asymptotic distribution of the estimator of each additive component is the same as it would be if the link function and the other components were known with certainty. Thus, asymptotically there is no penalty for not knowing the link function or the other components.

Suggested Citation

  • Horowitz, Joel L. & Mammen, Enno, 2011. "Oracle-Efficient Nonparametric Estimation Of An Additive Model With An Unknown Link Function," Econometric Theory, Cambridge University Press, vol. 27(03), pages 582-608, June.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:582-608_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    1. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity," Econometrica, Econometric Society, vol. 70(6), pages 2295-2350, November.
    2. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    3. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
    4. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," Review of Economic Studies, Oxford University Press, vol. 63(1), pages 145-168.
    6. Victor Chernozhukov & Patrick Gagliardini & Olivier Scaillet, 2006. "Nonparametric Instrumental Variable Estimators of Structural Quantile Effects," Swiss Finance Institute Research Paper Series 08-03, Swiss Finance Institute, revised Aug 2009.
    7. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    8. P. Groeneboom & G. Jongbloed, 2003. "Density estimation in the uniform deconvolution model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 136-157.
    9. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    10. Carrasco, Marine & Florens, Jean-Pierre, 2002. "Simulation-Based Method of Moments and Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 482-492, October.
    11. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46.
    12. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shujie Ma & Oliver Linton & Jiti Gao, 2017. "Estimation and inference in semiparametric quantile factor models," Monash Econometrics and Business Statistics Working Papers 8/17, Monash University, Department of Econometrics and Business Statistics.
    2. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Lewbel, Arthur & Lu, Xun & Su, Liangjun, 2015. "Specification testing for transformation models with an application to generalized accelerated failure-time models," Journal of Econometrics, Elsevier, vol. 184(1), pages 81-96.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:582-608_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.