IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v26y2010i05p1363-1397_99.html
   My bibliography  Save this article

Tests Of The Martingale Difference Hypothesis Using Boosting And Rbf Neural Network Approximations

Author

Listed:
  • Kapetanios, George
  • Blake, Andrew P.

Abstract

The martingale difference restriction is an outcome of many theoretical analyses in economics and finance. A large body of econometric literature deals with tests of that restriction. We provide new tests based on radial basis function (RBF) neural networks. Our work is based on the test design of Blake and Kapetanios (2000, 2003a, 2003b). However, unlike that work we provide a formal theoretical justification for the validity of these tests and present some new general theoretical results. These results take advantage of the link between the algorithms of Blake and Kapetanios (2000, 2003a, 2003b) and boosting. We carry out a Monte Carlo study of the properties of the new tests and find that they have very good power performance. A simplified implementation of boosting is found to have desirable properties and small computational cost. An empirical application to the S&P 500 constituents illustrates the usefulness of our new test.

Suggested Citation

  • Kapetanios, George & Blake, Andrew P., 2010. "Tests Of The Martingale Difference Hypothesis Using Boosting And Rbf Neural Network Approximations," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1363-1397, October.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1363-1397_99
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609990612/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024. "Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
    2. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
    3. Ilias Chronopoulos & Katerina Chrysikou & George Kapetanios & James Mitchell & Aristeidis Raftapostolos, 2023. "Deep Neural Network Estimation in Panel Data Models," Working Papers 23-15, Federal Reserve Bank of Cleveland.
    4. Weiwei Liu & Zhile Yang & Kexin Bi, 2017. "Forecasting the Acquisition of University Spin-Outs: An RBF Neural Network Approach," Complexity, Hindawi, vol. 2017, pages 1-8, October.
    5. Lee Jinu, 2019. "A Neural Network Method for Nonlinear Time Series Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1363-1397_99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.