IDEAS home Printed from
   My bibliography  Save this article

Efficient Detrending In Cointegrating Regression


  • Xiao, Zhijie
  • Phillips, Peter C.B.


No abstract is available for this item.

Suggested Citation

  • Xiao, Zhijie & Phillips, Peter C.B., 1999. "Efficient Detrending In Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 15(04), pages 519-548, August.
  • Handle: RePEc:cup:etheor:v:15:y:1999:i:04:p:519-548_15

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    1. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, March.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    4. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
    5. Guido M. Kuersteiner, 1999. "Efficiency IV Estimation for Autoregressive Models with Conditional Heterogeneity," Working papers 99-08, Massachusetts Institute of Technology (MIT), Department of Economics.
    6. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tu, Yundong & Yi, Yanping, 2017. "Forecasting cointegrated nonstationary time series with time-varying variance," Journal of Econometrics, Elsevier, vol. 196(1), pages 83-98.
    2. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(06), pages 927-997, December.
    3. Pierre Perron & Gabriel Rodriguez, 2012. "Residual test for cointegration with GLS detrended data," Documentos de Trabajo / Working Papers 2012-327, Departamento de Economía - Pontificia Universidad Católica del Perú.
    4. Moon, Hyungsik R & Phillips, Peter C B, 1999. " Maximum Likelihood Estimation in Panels with Incidental Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 711-747, Special I.
    5. Marco Morales, 2014. "Cointegration testing under structural change: reducing size distortions and improving power of residual based tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 265-282, June.
    6. Ted Juhl & Zhijie Xiao, 2000. "N-Consistent Semiparametric Regression: Partially Linear Models with Unit Roots," Econometric Society World Congress 2000 Contributed Papers 1532, Econometric Society.
    7. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    8. Boswijk, H. Peter & Jansson, Michael & Nielsen, Morten Ørregaard, 2015. "Improved likelihood ratio tests for cointegration rank in the VAR model," Journal of Econometrics, Elsevier, vol. 184(1), pages 97-110.
    9. Pierre Perron & Gabriel Rodríguez, "undated". "Residuals-based Tests for Cointegration with GLS Detrended Data," Boston University - Department of Economics - Working Papers Series wp2015-017, Boston University - Department of Economics, revised 19 Oct 2015.
    10. Xiao, Zhijie, 2004. "Estimating average economic growth in time series data with persistency," Journal of Macroeconomics, Elsevier, vol. 26(4), pages 699-724, December.
    11. Ke-Li Xu & Jui-Chung Yang, 2015. "Towards Uniformly Efficient Trend Estimation Under Weak/Strong Correlation and Non-stationary Volatility," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 63-86, March.
    12. Gabriel Rodriguez & Pierre Perron, 2013. "Single-equation tests for Cointegration with GLS Detrended Data," Boston University - Department of Economics - Working Papers Series 2013-016, Boston University - Department of Economics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:15:y:1999:i:04:p:519-548_15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.