IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i01p413-434_00.html
   My bibliography  Save this article

Stochastic Differential Games Between Two Insurers With Generalized Mean-Variance Premium Principle

Author

Listed:
  • Chen, Shumin
  • Yang, Hailiang
  • Zeng, Yan

Abstract

We study a stochastic differential game problem between two insurers, who invest in a financial market and adopt reinsurance to manage their claim risks. Supposing that their reinsurance premium rates are calculated according to the generalized mean-variance principle, we consider the competition between the two insurers as a non-zero sum stochastic differential game. Using dynamic programming technique, we derive a system of coupled Hamilton–Jacobi–Bellman equations and show the existence of equilibrium strategies. For an exponential utility maximizing game and a probability maximizing game, we obtain semi-explicit solutions for the equilibrium strategies and the equilibrium value functions, respectively. Finally, we provide some detailed comparative-static analyses on the equilibrium strategies and illustrate some economic insights.

Suggested Citation

  • Chen, Shumin & Yang, Hailiang & Zeng, Yan, 2018. "Stochastic Differential Games Between Two Insurers With Generalized Mean-Variance Premium Principle," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 413-434, January.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:413-434_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036117000356/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    2. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.
    3. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    4. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    5. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    6. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    7. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    8. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:413-434_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.