IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v45y2015i02p421-443_00.html
   My bibliography  Save this article

Recursive Calculation Of Ruin Probabilities At Or Before Claim Instants For Non-Identically Distributed Claims

Author

Listed:
  • Raducan, Anisoara Maria
  • Vernic, Raluca
  • Zbaganu, Gheorghita

Abstract

In this paper, we present recursive formulae for the ruin probability at or before a certain claim arrival instant for some particular continuous time risk model. The claim number process underlying this risk model is a renewal process with either Erlang or a mixture of exponentials inter-claim times (ICTs). The claim sizes (CSs) are independent and distributed in Erlang's family, i.e., they can have different parameters, which yields a non-homogeneous risk process. We present the corresponding recursive algorithm used to evaluate the above mentioned ruin probability and we illustrate it on several numerical examples in which we vary the model's parameters to assess the impact of the non-homogeneity on the resulting ruin probability.

Suggested Citation

  • Raducan, Anisoara Maria & Vernic, Raluca & Zbaganu, Gheorghita, 2015. "Recursive Calculation Of Ruin Probabilities At Or Before Claim Instants For Non-Identically Distributed Claims," ASTIN Bulletin, Cambridge University Press, vol. 45(2), pages 421-443, May.
  • Handle: RePEc:cup:astinb:v:45:y:2015:i:02:p:421-443_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036114000300/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    2. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    3. Tautvydas Kuras & Jonas Sprindys & Jonas Šiaulys, 2020. "Martingale Approach to Derive Lundberg-Type Inequalities," Mathematics, MDPI, vol. 8(10), pages 1-18, October.
    4. He, Yue & Kawai, Reiichiro, 2022. "Moment and polynomial bounds for ruin-related quantities in risk theory," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1255-1271.
    5. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:45:y:2015:i:02:p:421-443_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.