IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v11y2017i02p343-389_00.html
   My bibliography  Save this article

A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting

Author

Listed:
  • Fung, Man Chung
  • Peters, Gareth W.
  • Shevchenko, Pavel V.

Abstract

This paper explores and develops alternative statistical representations and estimation approaches for dynamic mortality models. The framework we adopt is to reinterpret popular mortality models such as the Lee–Carter class of models in a general state-space modelling methodology, which allows modelling, estimation and forecasting of mortality under a unified framework. We propose alternative model identification constraints which are more suited to statistical inference in filtering and parameter estimation. We then develop a class of Bayesian state-space models which incorporate a priori beliefs about the mortality model characteristics as well as for more flexible and appropriate assumptions relating to heteroscedasticity that present in observed mortality data. To study long-term mortality dynamics, we introduce stochastic volatility to the period effect. The estimation of the resulting stochastic volatility model of mortality is performed using a recent class of Monte Carlo procedure known as the class of particle Markov chain Monte Carlo methods. We illustrate the framework using Danish male mortality data, and show that incorporating heteroscedasticity and stochastic volatility markedly improves model fit despite an increase of model complexity. Forecasting properties of the enhanced models are examined with long-term and short-term calibration periods on the reconstruction of life tables.

Suggested Citation

  • Fung, Man Chung & Peters, Gareth W. & Shevchenko, Pavel V., 2017. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 343-389, September.
  • Handle: RePEc:cup:anacsi:v:11:y:2017:i:02:p:343-389_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499517000069/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Lu & Katja Hanewald & Xiaojun Wang, 2021. "Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors," Risks, MDPI, vol. 9(11), pages 1-21, November.
    2. Andrew Leung, 2019. "Hospital Proximity and Mortality in Australia," Risks, MDPI, vol. 7(3), pages 1-24, July.
    3. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    4. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    5. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    7. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    8. Rokas Gylys & Jonas Šiaulys, 2020. "Estimation of Uncertainty in Mortality Projections Using State-Space Lee-Carter Model," Mathematics, MDPI, vol. 8(7), pages 1-23, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:11:y:2017:i:02:p:343-389_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.