IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v61y2015i7id306-2015-pse.html
   My bibliography  Save this article

Effects of high soil lead concentration on photosynthetic gas exchange and chlorophyll fluorescence in Brassica chinensis L

Author

Listed:
  • W.G. Fu

    (Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, P.R. China)

  • F.K. Wang

    (Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, P.R. China)

Abstract

This study determined the effects of high soil lead concentration on photosynthetic gas exchange and chlorophyll fluorescence in Brassica chinensis L. Results showed the net photosynthetic rate, the maximum PSII quantum yield, photochemical quenching, and quantum yield of PSII photochemistry continuously increased until lead concentration reached 600 mg/kg. These parameters slightly decreased when lead concentration reached 900 mg/kg and significantly decreased when reached or exceeded 1200 mg/kg. As lead concentration increased, stomatal conductance and transpiration rate decreased; minimum fluorescence increased to different degrees; intercellular CO2 concentration initially decreased, increased, and then sharply decreased; and nonphotochemical quenching initially decreased and then increased. Therefore, soil treatment with 900 mg/kg lead can only slightly affect B. chinensis, whereas those with ≥ 1200 mg/kg can significantly affect this crop.

Suggested Citation

  • W.G. Fu & F.K. Wang, 2015. "Effects of high soil lead concentration on photosynthetic gas exchange and chlorophyll fluorescence in Brassica chinensis L," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(7), pages 316-321.
  • Handle: RePEc:caa:jnlpse:v:61:y:2015:i:7:id:306-2015-pse
    DOI: 10.17221/306/2015-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/306/2015-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/306/2015-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/306/2015-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Živčák & K. Olšovská & P. Slamka & J. Galambošová & V. Rataj & H.B. Shao & M. Brestič, 2014. "Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(5), pages 210-215.
    2. J. Olszewski & M. Makowska & A. Pszczółkowska & A. Okorski & T. Bieniaszewski, 2014. "The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(12), pages 531-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Yang & S. Shi & W. Gong & L. Du & Y.Y. Ma & B. Zhu & S.L. Song, 2015. "Application of fluorescence spectrum to precisely inverse paddy rice nitrogen content," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(4), pages 182-188.
    2. J. Yang & W. Gong & S. Shi & L. Du & J. Sun & S.-L. Song, 2016. "Estimation of nitrogen content based on fluorescence spectrum and principal component analysis in paddy rice," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(4), pages 178-183.
    3. Irena Siegień & Magdalena Fiłoc & Aleksandra Maria Staszak & Iwona Ciereszko, 2021. "Cyanogenic glycosides can function as nitrogen reservoir for flax plants cultured under N-deficient conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(4), pages 245-253.
    4. J. Yang & W. Gong & S. Shi & L. Du & J. Sun & Y.-Y. Ma & S.-L. Song, 2015. "Accurate identification of nitrogen fertilizer application of paddy rice using laser-induced fluorescence combined with support vector machine," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(11), pages 501-506.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:61:y:2015:i:7:id:306-2015-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.