IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v29y2012i1p19-46n3.html
   My bibliography  Save this article

PCA-kernel estimation

Author

Listed:
  • Biau Gérard
  • Mas André

    (Institut de Math´ematiques et de Modelisation de Montpellier, Equipe de Probabilites et Statistique, Montpellier Cedex 5, Frankreich)

Abstract

Many statistical estimation techniques for high-dimensional or functional data are based on a preliminary dimension reduction step, which consists in projecting the sample X1,...,Xn onto the first D eigenvectors of the Principal Component Analysis (PCA) associated with the empirical projector ^ ΠD. Classical nonparametric inference methods such as kernel density estimation or kernel regression analysis are then performed in the (usually small) D-dimensional space. However, the mathematical analysis of this data-driven dimension reduction scheme raises technical problems, due to the fact that the random variables of the projected sample (^ΠDX1,...,^ΠDXn) are no more independent. As a reference for further studies, we offer in this paper several results showing the asymptotic equivalencies between important kernel-related quantities based on the empirical projector and its theoretical counterpart. As an illustration, we provide an in-depth analysis of the nonparametric kernel regression case.

Suggested Citation

  • Biau Gérard & Mas André, 2012. "PCA-kernel estimation," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 19-46, March.
  • Handle: RePEc:bpj:strimo:v:29:y:2012:i:1:p:19-46:n:3
    DOI: 10.1524/strm.2012.1084
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/strm.2012.1084
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/strm.2012.1084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    3. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    4. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    5. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.
    6. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    7. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    8. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    9. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    10. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    11. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    12. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    13. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    14. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    15. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    16. Ana Aguilera & Francisco Ocaña & Mariano Valderrama, 1999. "Forecasting with unequally spaced data by a functional principal component approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 233-253, June.
    17. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    18. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    19. Vladimir Koltchinskii & Karim Lounici, 2017. "New Asymptotic Results in Principal Component Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 254-297, August.
    20. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    21. Fekri, M. & Ruiz-Gazen, A., 2004. "Robust weighted orthogonal regression in the errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 89-108, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:29:y:2012:i:1:p:19-46:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.