IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v11y2007i2n3.html
   My bibliography  Save this article

Volatility Components and Long Memory-Effects Revisited

Author

Listed:
  • Haas Markus

    (University of Munich)

Abstract

The goal of this paper is to illuminate the capability of the component GARCH model of Ding and Granger (1996) and Engle and Lee (1999) to reproduce the long memory-type behavior of financial volatility. The potential of this model to capture the long memory dynamics observed in measures of financial volatility has been documented recently by Maheu (2005) and Deo et al. (2006), who base their conclusions on simulation techniques and a forecasting exercise, respectively. In this paper, a simple explanation for these observations is provided, which is based on the theoretical autocorrelation function (ACF) of the component GARCH model. We also elucidate why even higher-order GARCH models with Bollerslev's (1986) nonnegativity constraints enforced cannot mimic the long memory effects. The reasoning is supported with several empirical examples, for which we explicitly calculate the theoretical ACF implied by a couple of different fitted models, and find that their structure is just as predicted by our argument. To conveniently conduct these computations, a general simple method for computing the theoretical ACF of GARCH models is suggested, which is easier to use than the formulas developed so far, and particularly so for higher lag-orders. The ability of the component model to approximate long memory is also validated on the basis of a visual comparison between the empirical and the implied theoretical ACFs.

Suggested Citation

  • Haas Markus, 2007. "Volatility Components and Long Memory-Effects Revisited," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(2), pages 1-39, May.
  • Handle: RePEc:bpj:sndecm:v:11:y:2007:i:2:n:3
    DOI: 10.2202/1558-3708.1411
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1411
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    2. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
    3. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:11:y:2007:i:2:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.