IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v20y2014i2p121-136n3.html
   My bibliography  Save this article

An efficient Monte Carlo solution for problems with random matrices

Author

Listed:
  • Grigoriu Mircea

    (Cornell University, Ithaca NY 14853–3501, USA)

Abstract

Random matrices, that is, matrices whose entries are measurable functions of a random vector Z, are encountered in finite element/difference formulations of a broad range of stochastic mechanics problems. Monte Carlo simulation, the only general method for solving this class of problems, is usual impractical when dealing with realistic problems. A new method is proposed for solving this class of problems. The method can be viewed as a smart Monte Carlo simulation. Like Monte Carlo, it calculates statistics for quantities of interest from deterministic matrices corresponding to samples of Z. In contract to Monte Carlo that uses a large number of samples of Z selected at random, the proposed method uses a small number of samples of this vector selected in an optimal manner. The method is based on stochastic reduced models (SROMs) for Z, i.e., random vectors with finite numbers of samples, and surrogate models expressing quantities of interest as known functions of Z. Theoretical arguments are followed by numerical examples providing statistics for inverses of random matrices, solutions of stochastic algebraic equations, and eigenvalues/eigenvectors of random matrices.

Suggested Citation

  • Grigoriu Mircea, 2014. "An efficient Monte Carlo solution for problems with random matrices," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 121-136, June.
  • Handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:121-136:n:3
    DOI: 10.1515/mcma-2013-0021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2013-0021
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2013-0021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabelfeld K. & Mozartova N., 2009. "Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 257-284, January.
    2. Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabelfeld, Karl K., 2018. "Stochastic projection methods and applications to some nonlinear inverse problems of phase retrieving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 169-175.
    2. Sabelfeld Karl & Mozartova Nadezhda, 2012. "Stochastic boundary collocation and spectral methods for solving PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 18(3), pages 217-263, September.
    3. Sabelfeld Karl K., 2016. "Vector Monte Carlo stochastic matrix-based algorithms for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 259-264, September.
    4. Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
    5. Grigoriu Mircea, 2017. "Monte Carlo algorithm for vector-valued Gaussian functions with preset component accuracies," Monte Carlo Methods and Applications, De Gruyter, vol. 23(3), pages 165-188, September.
    6. Corlay Sylvain & Pagès Gilles, 2015. "Functional quantization-based stratified sampling methods," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 1-32, March.
    7. Sabelfeld Karl K., 2016. "Splitting and survival probabilities in stochastic random walk methods and applications," Monte Carlo Methods and Applications, De Gruyter, vol. 22(1), pages 55-72, March.
    8. Shalimova Irina A. & Sabelfeld Karl K., 2014. "Stochastic polynomial chaos based algorithm for solving PDEs with random coefficients," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 279-289, December.
    9. Sabelfeld, Karl K., 2018. "A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 46-56.
    10. Sabelfeld Karl & Loshchina Nadja, 2010. "Stochastic iterative projection methods for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 343-359, January.
    11. Shalimova Irina A. & Sabelfeld Karl K., 2017. "Stochastic polynomial chaos expansion method for random Darcy equation," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 101-110, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:121-136:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.