IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v4y2008i1n15.html
   My bibliography  Save this article

Systematic Missing-At-Random (SMAR) Design and Analysis for Translational Research Studies

Author

Listed:
  • Belitskaya-Levy Ilana

    (New York University School of Medicine)

  • Shao Yongzhao

    (Iowa State University)

  • Goldberg Judith D

    (New York University School of Medicine)

Abstract

Translational research studies often involve a central study (e.g. clinical trial, cohort of patients, etc.) and multiple investigators who are each interested in addressing different research questions using the same patient population. However, it is often impossible for the investigators to include all patients in all of the ancillary translational research substudies that are part of the main study. This arises due to time and budgetary constraints and other logistical considerations. In this paper, we propose a prospective Systematic Missing-At-Random study design (SMAR) with planned partially missing covariates collected using a nested random sampling scheme that allows an integrated statistical analysis across all domains of data. We propose an algorithm for data analysis that incorporates the features of the design. We show that the SMAR design is computationally and statistically efficient as well as cost effective using simulation studies and a published data example. An extension to a two-stage prospective-retrospective design is discussed.

Suggested Citation

  • Belitskaya-Levy Ilana & Shao Yongzhao & Goldberg Judith D, 2008. "Systematic Missing-At-Random (SMAR) Design and Analysis for Translational Research Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-26, July.
  • Handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:15
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/ijb.2008.4.1/ijb.2008.4.1.1046/ijb.2008.4.1.1046.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua Yun Chen, 2003. "A note on the prospective analysis of outcome-dependent samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:4:y:2008:i:1:n:15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.